Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability

Abstract

The distribution and abundance of food resources is a major factor influencing animal populations. I studied the effect of a roe and red deer population decline on diet composition, home range size and foraging pattern in the Eurasian lynxLynx lynx (Linnaeus, 1758) in the Białowieża Primeval Forest (BPF), eastern Poland. The population of cervids in BPF experienced a nearly two-fold reduction in size from 1991 through 2006 due to severe hunting pressure between 1991 and 1996. Comparison of published data on lynx diet during the high abundance of ungulates with new data obtained for the low abundance period showed that despite a significant decline in their availability, cervids (roe and red deer) continued to form the majority of the diet of lynx, with roe deer being most preferred in both periods. Home range sizes of lynx showed a tendency to increase with declining prey densities, as indicated by relative percentage increases in average yearly home range sizes amongst different sex/age groups. In response to lower availability of their main prey, lynx increased their daily straight-line movement distances by 44% and doubled the ranges covered in 5-day periods. This illustrated that, with declining prey abundance, the lynx increased their hunting efforts by either spending more time actively searching for prey or continuing foraging even after a successful hunt. Spatial analysis of the distribution of ungulates and lynx indicated that deer were evenly distributed throughout lynx ranges in BPF and spatial proximity of the predator to prey sites did not play an important role in the efficiency of hunting. Lynx may adapt to changing prey availability by increasing search effort, but this was not sufficient to prevent the negative influences of the prey decline on the lynx population. Prey depletion has an immediate effect on lynx spatial organization and, in consequence, on their density. This information has to be considered in prioritizing lynx conservation measures and management of ungulates.

This is a preview of subscription content, access via your institution.

References

  1. Andersson M. 1981. On optimal predator search. Theoretical Population Biology 19: 58–86.

    Article  Google Scholar 

  2. Ballard W. B., Ayres L. A., Krausman P. R., Reed D. J. and Fancy S. G. 1997. Ecology of wolves in relation to a migratory caribou herd in Northwest Alaska. Wildlife Monographs 135: 1–47.

    Google Scholar 

  3. Benson J. F., Chamberlain M. J. and Leopold B. D. 2006. Regulation of space use in a solitary felid: population density or prey availability? Animal Behaviour 71: 685–693.

    Article  Google Scholar 

  4. BiotasTM 2003. Ecological Software Solutions LLC. Version 1.03.1 alpha.

  5. Branch L. C., Pessino M. and Villarreal D. 1996. Response of pumas to a population decline of the plains vizcacha. Journal of Mammalogy 77: 1132–1140.

    Article  Google Scholar 

  6. Brandt M. J. and Lambin X. 2007. Movement patterns of a specialist predator, the weaselMustela nivalis exploiting asynchronous cyclic field voleMicrotus agrestis populations. Acta Theriologica 52: 13–25.

    Article  Google Scholar 

  7. Brown J. S., Laundré J. W. and Gurung M. 1999. The ecology of fear: optimal foraging, game theory, and trophic interactions. Journal of Mammalogy 80: 385–399.

    Article  Google Scholar 

  8. Charnov E. L., Orians G. H. and Hyatt K. 1976. Ecological implications of resource depression. American Naturalist 110: 247–259.

    Article  Google Scholar 

  9. Danell A. C., Andrén H., Segerström P. and Franzén R. 2006. Space use by Eurasian lynx in relation to reindeer migration. Canadian Journal of Zoology 84: 546–555.

    Article  Google Scholar 

  10. Debrot S., Fivaz G., Mermod C. and Weber J.-M. 1982. Atlas de poils de mammiffères d’Europe. Universite de Neuchâtel, Neuchâtel: 1–208.

    Google Scholar 

  11. Faliński J. B. 1986. Vegetation dynamics in temperate lowland primeval forest. Dr. W. Junk Publishers, Dordrecht: 1–537.

    Google Scholar 

  12. Fuller T. K. 2003. Wolf population dynamics. [In: Wolves: behavior, ecology and conservation. L. D. Mech and L. Boitani, eds]. The University of Chicago Press, Chicago: 161–191.

    Google Scholar 

  13. Gil-Sánchez J. M., Ballesteros-Duperón E., Bueno-Segura J. F. 2006. Feeding ecology of the Iberian lynxLynx pardinus in eastern Sierra Morena (Southern Spain). Acta Theriologica 51: 85–90.

    Article  Google Scholar 

  14. Gompper M. E. and Gittleman J. L. 1991. Home range scaling: intraspecific and comparative trends. Oecologia 87: 343–348.

    Article  Google Scholar 

  15. Goszczyński J. 1974. Studies on the food of foxes. Acta Theriologica 19: 1–18.

    Google Scholar 

  16. Grigione M. M., Beier P., Hopkins R. A., Neal D., Padley W. D., Schoenewald C. M. and Johnson M. L. 2002. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Animal Conservation 5: 317–324.

    Article  Google Scholar 

  17. Hayward M. W., O’Brien J. and Kerley G. I. H. 2007. Carrying capacity of large African predators: Predictions and tests. Biological Conservation 139: 219–229.

    Article  Google Scholar 

  18. Herfindal H., Linnell J. D. C., Odden J., Nilsen E. B. and Andersen R. 2005. Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). Journal of Zoology, London 265: 63–71.

    Article  Google Scholar 

  19. Hopcraft J. G. C., Sinclair A. R. E. and Packer C. 2005. Planning for success: Serengeti lions seek prey accessibility rather than abundance. Journal of Animal Ecology 74: 559–66.

    Article  Google Scholar 

  20. Jackson P. 1989. A footsnare for medium-sized carnivores. Cat News 11: 20.

    CAS  Google Scholar 

  21. Janson S. and Vegelius J. 1981. Measures of ecological association. Oecologia 49: 371–376.

    Article  Google Scholar 

  22. Jędrzejewska B. and Jędrzejewski W. 1998. Predation in vertebrate communities. The Białowieża Primeval Forest as a case study. Springer, Berlin-Heidelberg-New York: 1–450. Eurasian lynx response to prey decline 13

    Google Scholar 

  23. Jędrzejewski W., Jędrzejewska B., Okarma H., Schmidt K., Bunevich A. N. and Miłkowski L. 1996. Population dynamics (1869-1994), demography and home ranges of the lynx in Białowieża Primeval Forest (Poland and Belaruss). Ecography 19: 122–138.

    Article  Google Scholar 

  24. Jędrzejewski W., Schmidt K., Miłkowski L., Jędrzejewska B. and Okarma H. 1993. Foraging by lynx and its role in ungulate mortality: the local (Białowieża Forest) and the Palearctic viewpoints. Acta Theriologica 38: 385–403.

    Google Scholar 

  25. Jędrzejewski W., Schmidt K., Okarma H. and Kowalczyk R. 2002a. Movement pattern and home range use by the Eurasian lynx in Białowieża Primeval Forest (Poland). Annales Zoologici Fennici 39: 29–41.

    Google Scholar 

  26. Jędrzejewski W., Schmidt K., Theuerkauf J., Jedrzejewska B., Selva N., Zub K. and Szymura L. 2002b. Kill rates and predation by wolves on ungulate populations in Białowieża Primeval Forest (Poland). Ecology 83: 1341–1356.

    Google Scholar 

  27. Jędrzejewski W., Schmidt K., Theuerkauf J., Jędrzejewska B. and Kowalczyk R. 2007. Territory size of wolvesCanis lupus: linking local (Białowieża Primeval Forest, Poland) and Holarctic-scale patterns. Ecography 30: 66–76.

    Google Scholar 

  28. Jobin A., Molinari P. and Breitenmoser U. 2000. Prey spectrum, prey preference and consumption rates of Eurasian lynx in the Swiss Jura Mountains. Acta Theriologica 45: 243–252.

    Google Scholar 

  29. Johnson A., Vongkhamheng C., Hedemark M. and Saithongdam T. 2006. Effects of human-carnivore conflict on tiger (Panthera tigris) and prey populations in Lao PDR. Animal Conservation 9: 421–430.

    Article  Google Scholar 

  30. Karanth K. U. and Stith B. M. 1999. Prey depletion as a critical determinant of tiger population variability. [In: Riding the tiger. Tiger conservation in human dominated landscapes. J. Seidensticker, S. Christie and P. Jackson, eds]. Cambridge University Press, Cambridge: 100–113.

    Google Scholar 

  31. Knick S. T. 1990. Ecology of bobcats relative to exploitation and a prey decline in southeastern Idaho. Wildlife Monographs 108: 1–42.

    Google Scholar 

  32. Kossak S. 1995. Game animal numbers in the Białowieża Forest and proposed ways of game management. Sylwan 139 (8): 25–41. [In Polish with English summary]

    Google Scholar 

  33. Linnell J. D. C., Andersen R., Kvam T., Andrén H., Liberg O., Odden J. and Moa P. F. 2001. Home range size and choice of management strategy for lynx in Scandinavia. Environmental Management 27: 869–879.

    CAS  Article  PubMed  Google Scholar 

  34. Litvaitis J. A., Sherburne J. A. and Bissonette J. A. 1986. Bobcat habitat use and home range size in relation to prey density. Journal of Wildlife Management 50: 110–117.

    Article  Google Scholar 

  35. Logan K. A. and Sweanor L. L. 2001. Desert puma. Evolutionary ecology and conservation of an enduring carnivore. Island Press, Washington: 1–463.

    Google Scholar 

  36. Macdonald D. W. 1983. The ecology of carnivore social behavior. Nature 301: 379–384.

    Article  Google Scholar 

  37. Manly B. F. J.,McDonald L. L., Thomas D. L.,McDonald T. L. and Erickson W. P. 2002. Resource selection by animals. Second edition. Kluwer Academic Publishers, Dordrecht: 1–221.

    Google Scholar 

  38. McLoughlin P. D. and Ferguson S. H. 2000. A hierarchical sequence of limiting factors may help explain variation in home range size. écoscience 7: 123–130.

    Google Scholar 

  39. Messier F. 1991. The significance of limiting and regulating factors on the demography of moose and white-tailed deer. Journal of Animal Ecology 60: 377–393.

    Article  Google Scholar 

  40. Mishra C., Allen P., McCarthy T., Madhusudan M. D., Bayarjargal A. and Prins H. H. T. 2003. The role of incentive programs in conserving the snow leopard Conservation Biology 17: 1512–1520.

    Google Scholar 

  41. Mitchell M. S. and Powell R. A. 2004. A mechanistic home range model for optimal use of spatially distributed resources. Ecological Modelling 177: 209–232.

    Article  Google Scholar 

  42. Moa P. F., Herfindal I., Linnell J. D. C., Overskaug K., Kvam T. and Andersen R. 2006. Does the spatiotemporal distribution of livestock influence forage patch selection in Eurasian lynxLynx lynx? Wildlife Biology 12: 63–70.

    Article  Google Scholar 

  43. Morishita M. 1959. Measuring of the dispersion and analysis of distribution patterns. Memoirs of the Faculty of Science. Kyushu University. Series E (Biology) 2: 215–235.

    Google Scholar 

  44. Mowat G., Poole K. G. and O’Donoghue M. 2000. Ecology of lynx in northern Canada and Alaska. [In: Ecology and conservation of lynx in the United States. L. F. Ruggiero, K. B. Aubry, S. W. Buskirk, G. M. Koehler, C. J. Krebs, K. S. McKelvey and J. R. Squires, eds]. University Press of Colorado and USDA, Rocky Mountains Research Station: 265–306.

  45. Odden J., Linnell J. D. C. and Andersen R. 2006. Diet of Eurasian lynx,Lynx lynx, in the boreal forest of southeastern Norway: the relative importance of livestock and hares at low roe deer density. European Journal of Wildlife Research 52: 237–244.

    Article  Google Scholar 

  46. Okarma H., Jędrzejewski W., Schmidt K., Kowalczyk R. and Jędrzejewska B. 1997. Predation of Eurasian lynx on roe deer and red deer in Białowieża Primeval Forest, Poland. Acta Theriologica 42: 203–224.

    Google Scholar 

  47. Palomares F., Delibes M., Revilla E., Calzada J. and Fedriani J. M. 2001. Spatial ecology of Iberian lynx and abundance of European rabbits in southern Spain. Wildlife Monographs 148: 1–36.

    Google Scholar 

  48. Patterson B. R. and Messier F. 2001. Social organization and space use of coyotes in eastern Canada relative to prey distribution and abundance. Journal of Mammalogy 82: 463–477.

    Article  Google Scholar 

  49. Pedersen V., Linnell J. D. C., Andersen R., Andrén H., Segerström P. and Lindén M. 1999.Winter lynx predation on semi-domestic reindeer in northern Sweden. Wildlife Biology 5: 203–212.

    Google Scholar 

  50. Pierce B.M., Bleich V. C.,Wehausen J. D. and Bowyer R. T. 1999. Migratory patterns of mountain lions: implications for social regulation and conservation. Journal of Mammalogy 80: 986–992.

    Article  Google Scholar 

  51. Podgórski T., Schmidt K., Kowalczyk R. and Gulczyñska A. 2008. Microhabitat selection by Eurasian lynx and its implications for species conservation. Acta Theriologica 53 (in press).

  52. Pucek Z. (ed) 1981. Keys to vertebrates of Poland. Mammals. Polish Scientific Publishers, Warszawa: 1–367.

    Google Scholar 

  53. Ranta E., Lundberg P. and Kaitala V. 2006. Ecology of populations. Cambridge University Press, Cambridge 1–373.

    Google Scholar 

  54. Sandell M. 1989. The mating tactics and spacing patterns of solitary carnivores. [In: Carnivore behavior, ecology and evolution. J. L. Gittleman, ed]. Chapman and Hall, London: 164–182.

    Google Scholar 

  55. Scheel D. and Packer C. 1995. Variation in predation by lions: tracking a movable feast. [In: Serengeti II: dynamics, management, and conservation of an ecosystem. A. R. E. Sinclair and P. Arcese, eds]. The University of Chicago Press, Chicago and London: 299–314.

    Google Scholar 

  56. Schluter D. 1984. A variance test for detecting species associations, with some example applications. Ecology 65: 998–1005.

    Article  Google Scholar 

  57. Schmidt K. 1998. Maternal behaviour and juvenile dispersal in the Eurasian lynx. Acta Theriologica 43: 391–408.

    Google Scholar 

  58. Schmidt K. 1999. Variation in daily activity of the free living Eurasian lynx in Białowieża Primeval Forest, Poland. Journal of Zoology, London 249: 417–425.

    Google Scholar 

  59. Schmidt K., Jędrzejewski W. and Okarma H. 1997. Spatial organization and social relations in the Eurasian lynx population in Białowieża Primeval Forest, Poland. Acta Theriologica 42: 289–312.

    Google Scholar 

  60. Sidorovich V. E. 2006. Relationship between prey availability and population dynamics of the Eurasian lynx and its diet in northern Belarus. Acta Theriologica 51: 265–274.

    Article  Google Scholar 

  61. Stephens D. W. and Krebs J. R. 1986. Foraging theory. Princeton University Press, Princeton: 1–247.

    Google Scholar 

  62. Sunde P. and Kvam T. 1997. Diet patterns of Eurasian lynxLynx lynx: what causes sexually determined prey size segregation? Acta Theriologica 42: 189–201.

    Google Scholar 

  63. Sunquist M. E. and Sunquist F. C. 2002. Wild cats of the world. The University of Chicago Press, Chicago and London: 1–452.

    Google Scholar 

  64. Turner J. W. and Morrison M. L. 2001. Influence of predation by mountain lions on numbers and survivorship of a feral horse population. The Southwestern Naturalist 46: 183–190.

    Article  Google Scholar 

  65. Valdmann H., Andersone-Lilley Z., Koppa O., Ozolins J. and Bagrade G. 2005. Winter diets of wolfCanis lupus and lynxLynx lynx in Estonia and Latvia. Acta Theriologica 50: 521–527.

    Article  Google Scholar 

  66. Van Orsdol K. G., Hanby J. P. and Bygott J. D. 1985. Ecological correlates of lion social organisation (Panthera leo). Journal of Zoology, London 206: 97–112.

    Article  Google Scholar 

  67. Weckel M., Giuliano W. and Silver S. 2006. Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. Journal of Zoology, London 270: 25–30.

    Google Scholar 

  68. Wehausen J. D. 1996. Effects of mountain lion predation on bighorn sheep in the Sierra Nevada and Granite Mountains of California. Wildlife Society Bulletin 24: 471–479.

    Google Scholar 

  69. Wesołowski T. 2005. Virtual conservation: How the European Union is turning a blind eye to its vanishing primeval forests. Conservation Biology 19: 1349–1358.

    Article  Google Scholar 

  70. Wydeven A. P., Schultz R. N. and Thiel R. P. 1995. Monitoring of a recovering gray wolf population in Wisconsin, 1979-1991. [In: Ecology and conservation of wolves in a changing world. L. N. Carbyn, S. H. Fritts and D. R. Seip, eds]. Canadian Circumpolar Institute, Edmonton: 147–156.

    Google Scholar 

  71. Zalewski A. and Jędrzejewski W. 2006. Spatial organisation and dynamics of pine martenMartes martes population in Białowieża Forest (E Poland) compared with other European woodlands. Ecography 29: 31–43.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Associate editor was Andrzej Zalewski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, K. Behavioural and spatial adaptation of the Eurasian lynx to a decline in prey availability. Acta Theriol 53, 1–16 (2008). https://doi.org/10.1007/BF03194274

Download citation

Key words

  • Lynx lynx
  • Cervids
  • diet
  • home range
  • foraging
  • predator-prey relationships