Skip to main content
Log in

Morphometric, biochemical and molecular traits in Caucasian wood mice (podemus/Sylvaemus), with remarks on species divergence

  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

We analysed Caucasian wood mice from Georgia (n = 60) and supplementary reference material of theApodemus/Sylvaemus species group to evaluate the reliability of taxon identification. Traditional “expert knowledge” plus three different methodological approaches were employed and combined to perceive their discriminatory power for a reliable taxon assignment. Graphs of principal component scores derived from the analysis of 14 skull metrics displayed taxon membership of individuals. Individual multi--locus (L = 18) electrophoretic profiles were used to re-assess specimens to a specific genepool by an assignment test based on allele frequencies indicative of populational taxon samples of the respective sampling locations. Genotyped individuals were re-allocated to those taxa, for which they yielded the highest probability score. Genetic distances among the taxa were computed and clustered in a neighbour-joining tree. PCR-fragments of 1074bp amplified from the mitochondrial cytochromeb gene were cut with 2 six- and 4 four-cutter restriction enzymes, and resulting RFLP patterns were analysed phenetically to classify the specimens according to their molecular similarity. Partial cytochromeb sequences were used to construct a phylogenetic tree by computing neighbour-joining clusters from a matrix of percent nucleotide differences. The power of the combined classification approaches and their congruence is discussed. It is concluded that the joint application of traditional, morphometric and biochemical or genetic techniques for taxon allocation of specimens of wood mice encountered problems in species delimitation. The mtDNA topology obtained was not congruent with protein polymorphism that indicated differential historical and/or recent introgression and incomplete lineage sorting in substructured populations. Cytochromeb sequence DNA data analysed were not as adequate as expected to resolve phylogenetic relationships among Caucasian and European members of theApodemus-Sylvaemus complex. Altogether, morphometric, biochemical and sequence data sets did not support the hypothesis of the evolutionary independence of European and Caucasian lineages of wood mice. Nonetheless, extended combined morphological and genetic analyses are considered necessary prerequisites to an in-depth study of the evolutionary lineages of theApodemus/Sylvaemus group. More sequence data of a variety of genes (and plenty of nuclear markers) are needed to resolve the various levels of differentiation of the extant lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alf R., Hille A. and Kneitz G. 1997. Genetische Populationsstruktur von Gelbhalsmäusen,Apodemus flavicollis, in einer intensiv genutzten Agrarlandschaft im östlichen Westfalen. Abhandlungen aus dem Westfälischen Museum für Naturkunde Münster 59: 117–134.

    Google Scholar 

  • Avise J. C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, N.Y.: 1–586.

    Google Scholar 

  • Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W. and Clayton D. A. 1991. Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180.

    Article  Google Scholar 

  • Bookstein F., Chernoff B., Elder R., Humphries J., Smith G. and Strauss R. 1985. Morphometrics in evolutionary biology. Academy of Natural Sciences Philadelphia, Special Publicaltion 15: 1–277.

    Google Scholar 

  • Brown W. M., Prager E. M., Wang A. and Wilson A. C. 1982. Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution 18: 225–239.

    Article  CAS  PubMed  Google Scholar 

  • Chelomina G. N. 1998. Molecular phylogeny of wood and field mice of the genusApodemus(Muridae, Rodentia) based on the data on restriction analysis of total nuclear DNA. Russian Journal of Genetics 34: 1084–1089.

    CAS  Google Scholar 

  • Chelomina G. N., Suzuki H., Tsuchiya K., Moriwaki K., Lyapunova E. A. and Vorontsov N. N. 1998. Sequencing of the mtDNA cytochromeb gene and reconstruction of the maternal relationships of the wood and field mice of the genusApodemus (Muridae, Rodentia). Russian Journal of Genetics 34: 529–539.

    CAS  Google Scholar 

  • Dixon W. J. 1990. BMDP statistical software. University of California Press, Berkeley.

    Google Scholar 

  • Felsenstein J. 1997. PHYLIP (Phylogeny Inference Package). University of Washington, Washington.

    Google Scholar 

  • Filippucci M. G. 1992. Allozyme variation and divergence among European, Middle Eastern, and North African species of the genusApodemus (Rodentia, Muridae). Israel Journal of Zoology 38: 193–218.

    Google Scholar 

  • Filippucci M. G., Storch G. and Macholan M. 1996. Taxonomy of the genusSylvaemus in western Anatolia — morphological and electrophoretic evidence (Mammalia: Rodentia: Muridae). Senckenbergiana Biologica 75: 1–14.

    Google Scholar 

  • Gorman G. C., Wilson A. C. and Nakanishi M. 1971. A biochemical approach towards the study of reptilian phylogeny: evolution of serum albumin and lactic dehydrogenase. Systematic Zoology 20: 167–186.

    Article  CAS  Google Scholar 

  • Gustincich S., Manfioletti G., Del Sal C., Schneider C. and Carninci C. 1991. A fast method for high-quality genomic DNA extraction from whole human blood. BioTechniques 11: 298–302.

    CAS  PubMed  Google Scholar 

  • Hille A. and Meinig H. 1996. The subspecific status of European populations of the striped field mouseApodemus agrarius (Pallas, 1771) base on morphological and biochemical characters. Bonner Zoologische Beiträge 46: 203–231.

    Google Scholar 

  • Irwin D. M., Kocher T. D. and Wilson A. C. 1991. Evolution of the cytochromeb gene of mammals. Journal of Molecular Evolution 32: 128–144.

    Article  CAS  PubMed  Google Scholar 

  • Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Pääbo S., Villablanca F. X. and Wilson A. C. 1989. Dynamics of mitochondrial DNA evolution in mammals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Science of the USA 86: 6196–6200.

    Article  CAS  Google Scholar 

  • Kumar S., Tamura K. and Nei M. 1993. MEGA Molecular Evolutionary Genetics Analysis. The Pennsylvania State University, University Park, PA 16802, USA.

    Google Scholar 

  • Makova K. D., Nekrutenko A. and Baker R. J. 2000. Evolution of microsatellite alleles in four species of mice (genusApodemus). Journal of Molecular Evolution 51: 166–172.

    CAS  PubMed  Google Scholar 

  • Martin Y., Gerlach G., Schlötterer C. and Meyer A. 2000. Molecular phylogeny of European muroid rodents based on complete cytochromeb sequences. Molecular Phylogenetics and Evolution 16: 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Mezhzherin S. V. 1990. Allozyme variability and genetic divergence in wood mice of the subgenusSylvaemus (Ognev et Vorobiev). Russian Journal of Genetics 26: 677–684.

    Google Scholar 

  • Mezhzherin S. V. 1997a. Biochemical systematics of the wood mouse,Sylvaemus sylvaticus (L., 1758) sensu lato (Rodentia, Muridae) from Eastern Europe and Asia. Zeitschrift für Säugetierkunde 62: 303–311.

    Google Scholar 

  • Mezhzherin S. V. 1997b. Genetic differentiation and phylogenetic relationsships among Palearctic mice (Rodentia, Muridae). Russian Journal of Genetics 33: 65–72.

    CAS  Google Scholar 

  • Mezhzherin S. V. 1997c. Revision of mice genusApodemus (Rodentia, Muridae) of northern Eurasia. Vestnik Zoologii 31(4): 29–41.

    Google Scholar 

  • Mezhzherin S. V. 1997d. Gradualism or punctualism: evidence on genetic differentiation of small mammals from the Holarctic Region. Russian Journal of Genetics 33: 424–428.

    CAS  Google Scholar 

  • Mezhzherin S. V., Boyeskorov G. G. and Vorontosov N. N. 1993. Genetic relations of the European and Transcaucasian wood and field mice of the genusApodemus Kaup. Russian Journal of Genetics 28: 1468–1477.

    Google Scholar 

  • Mezhzherin S. V. and Zykov A. E. 1991. Genetic divergence and allozyme variability of mice of the genusApodenus sensu lato (Muridae, Rodentia). Tsitologiya i Genetika 25(4): 51–59.

    CAS  Google Scholar 

  • Michaux J. 1971. Muridae (Rodentia) Neogenes d’Europe sud-occidentale. Evolution et rapports avec les formes actuelles. Paleobiologie Continentale 2(1): 1–68, 12pls.

    Google Scholar 

  • Michaux J. R., Filipucci M.-G., Libois R., Fons R. M. and Matagne F. 1996. Biogeography and taxonomy ofApodemus sylvaticus (the woodmouse) in the Tyrrhenian region: enzymatic variations and mitochondrial DNA restriction pattern analysis. Heredity 76: 267–277.

    Article  PubMed  Google Scholar 

  • Michaux J., Libois R., Ramalhinho M. G. and Maurois C. 1998. On the genetic structure of the Iberian wood mouse (Apodemus sylvaticus) populations. An analysis of mt-DNA restriction patterns. Euro-American Mammal Congress, Santiago de Compostela, Universidade de Santiago de Compostela, Abstracts: 135.

  • Mitchell-Jones A. J., Amori G., Bogdanowicz W., Krystufek B., Reijnders P. J. H., Spitzenberger F., Stubbe M., Thissen J. B. M., Vohralík V. and Zima J. (eds) 1999. The atlas of European mammals. T & AD Poyser, London: 1–484.

    Google Scholar 

  • Morgilevskaya I. E. and Tskipurishvili D. G. 1989. The wood mouse in Georgia, a morphological study. Metsniereba Publishers, Tbilisi: 1–112. [In Russian]

    Google Scholar 

  • Murphy R. W., Sites J. W., Buth D. G. and Haufler C. H. 1996. Proteins I: isozyme electrophoresis. [In: Molecular systematics. D. W. Hillis and C. Moritz, eds]. Sinauer, Sunderland, MA: 44–126.

    Google Scholar 

  • Musser G. G., Brothers E. M., Carleton M. and Hutterer R. 1996. Taxonomy and distributional records of Oriental and EuropeanApodemus, with a review of theApodemus-Sylvaemus problem. Bonner Zoologische Beiträge 46: 143–190.

    Google Scholar 

  • Musser G. G. and Carleton M. 1993. Family Muridae. [In: Mammal species of the World: A taxonomic and geographic reference. Second edition. Wilson D. E. and Reeder D. M., eds]. Smithsonian Institution Press, Washington: 501–755.

    Google Scholar 

  • Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York: 1–512.

    Google Scholar 

  • Nei M. and Li C. C. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 76: 5269–5273.

    Article  CAS  PubMed  Google Scholar 

  • Niethammer J. 1969. Zur Frage der Introgression bei den WaldmäusenApodemus sylvaticus undA. flavicollis (Mammalia, Rodentia). Zeitschrift für Zoologische Systematik und Evolutionsforschung 7: 77–127.

    Google Scholar 

  • Orlov V. N., Bulatova N. S., Nadjafova R. R. and Kozlovsky A. I. 1996. Evolutionary classification of European wood mice of the subgenusSylvaemus based on allozyme and chromosome data. Bonner Zoologische Beiträge 46: 191–202.

    Google Scholar 

  • Page R. D. 1998. TREEVIEW: An application to display phylogenetic trees on personal computers. CABIOS 12: 357–358.

    Google Scholar 

  • Palmeirim J. M. 1998. Analysis of skull measurements and measurers: Can we use data obtained by various observers? Journal of Mammalogy 79: 1021–1028.

    Article  Google Scholar 

  • Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sembrook J., Frisch E. F. and Maniatis T. 1989. Molecular cloning: labotatory manual. Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York: 3 volumes (no running pagination).

    Google Scholar 

  • Serizawa K., Suzuki H. and Tsuchiya K. 2000. A phylogenetic view on species radiation inApodemus inferred from variation of nuclear and mitochondrial genes. Biochemical Genetics 38: 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Sneath P. and Sokal R. 1973. Numerical taxonomy. Freeman & Co, San Francisco: 1–573.

    Google Scholar 

  • Swofford D. L. and Selander R. B. 1981: BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281–283.

    Google Scholar 

  • Thompson J. D., Higgins H. G. and Gibson T. J. 1994. CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y. and De Wachter R. 1994. TREECON for Windows. A software package for the construction and drawing of evolutionary distance trees for the Microsoft Windows environment. CABIOS 10: 569–570.

    PubMed  Google Scholar 

  • Waser P. M. and Strobeck C. 1998. Genetic signatures of interpopulation dispersal. TREE 13: 43–44.

    Google Scholar 

  • Zagorodnyuk I. V., Boyeskorov G. G. and Zykov A. Y. 1997. Variation and taxonomic status of the steppe forms of genusSylvaemus “sylvaticus” (falzfeini — fulvipectus — hermonensis — arianus). Vestnik Zoologii 31(5-6): 37–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Hutterer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hille, A., Tarkhnishvili, D., Meinig, H. et al. Morphometric, biochemical and molecular traits in Caucasian wood mice (podemus/Sylvaemus), with remarks on species divergence. Acta Theriol 47, 389–416 (2002). https://doi.org/10.1007/BF03192465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192465

Key words

Navigation