Skip to main content
Log in

Calculation of steady-state distribution delay between central and peripheral compartments in two-compartment models with infusion regimen

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

A lag time may exist between blood drug concentration and drug effect. Various factors can contribute to the lag time, among which the drug distribution delay is a significant one. The drug distribution delay can also exist between different compartments. An equation was derived to calculate the steady-state drug concentration delay between central and peripheral compartments in a two-compartment model with infusion regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy G. (1994): Mechaism-based pharmacodynamic modeling. Clin. Pharmacol. Ther. 56, 256–258.

    Google Scholar 

  2. Chiou W.L. (1989): The phenomenon and rational of marked dependence of drug concentration on blood sampling site: Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part I). Clin. Pharmacokinet. 17, 175–199.

    Article  CAS  PubMed  Google Scholar 

  3. Chiou W.L. (1989): The phenomenon and rational of marked dependence of drug concentration on blood sampling site: Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part II). Clin. Pharmacokinet. 17, 275–290.

    Article  CAS  PubMed  Google Scholar 

  4. Pedraz J.L., Calvo B., Smithers J.A., Thompson G.A. (1992): Pharmacokinetic-pharmacodynamic modeling: Time dependent protein binding_an alternative interpretation of clockwise and counterclockwise hysteresis. J. Pharm. Sci. 81, 232–236.

    Article  CAS  PubMed  Google Scholar 

  5. Mehvar R. (1992): Stereochemical considerations in pharmacodynamic modeling of chiral drugs. J. Pharm. Sci. 81, 199–200.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta S.K., Hwang S.S., Benet L.Z., Gumbleton M. (1993): Interpretation and utilization of effect and concentration data collected with an in-vivo pharmacokinetic and in-vitro pharmacodynamic study design. Pharm. Res. 10, 889–894.

    Article  CAS  PubMed  Google Scholar 

  7. Holford N.H.G., Sheiner L.B. (1981): Understanding the dose-effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin. Pharmacokinet. 6, 429–453.

    Article  CAS  PubMed  Google Scholar 

  8. Abbott Laboratories. Abbottbase Pharmacokinetic Systems. Abbott Park, IL. (1992).

  9. Wu G. (1996): Fit fluctuating blood drug concentration: a beginner’s first note. Pharmacol. Res. 33, 379–383.

    Article  CAS  PubMed  Google Scholar 

  10. Wu G. (1997): An explanation for failure to predict cyclosporine area under the curve using a limited sampling strategy: a beginner’s second note. Pharmacol. Res. 35, 547–552.

    Article  CAS  PubMed  Google Scholar 

  11. Wu G. (1997): Using a four-compartment closed model to describe inhalation of vaporised ethanol on 1–14C-pyruvate kinetics in mice. Arch. Toxocol. 71, 501–507.

    Article  CAS  Google Scholar 

  12. Wu G. (1997): Use of a five-compartment closed model to describe the effects of ethanol inhalation on the transport and elimination of injected pyruvate in the rat. Alcohol. Alcohol. 32, 555–561.

    CAS  PubMed  Google Scholar 

  13. Wu G. (1998): Effect of vaporized ethanol on [1-14C] pyruvate kinetics in mice using a four-compartment closed model. Pharmacol. Res. 37, 49–55.

    Article  CAS  PubMed  Google Scholar 

  14. Wu G. (1998): Assessment of glomerular filtration rate by means of the three-compartment closed model after a single intravenous injection. Arch. Ital. Urol. Androl. 70, 7–10.

    CAS  PubMed  Google Scholar 

  15. Wu G. (1998): Estimation of drug excretion from blood into gut using a three-compartment closed model. Pharmacol. Res. 37, 157–163.

    Article  CAS  PubMed  Google Scholar 

  16. Wu G. (1998): Assessment of glomerular filtration rate by means of the four-, and more compartmental closed models after a single intravenous injection. Arch. Ital. Urol. Androl. 70, 51–55.

    CAS  PubMed  Google Scholar 

  17. Wu G. (1998): Using three-, four- and n-compartment closed model to estimate glomerular filtration rate during and after a constant rate intravenous infusion. Eur. J. Pharm. Biopharm. 46, 397–402.

    Article  CAS  PubMed  Google Scholar 

  18. Wu G. (1999): Ethanol inhalation on 1-[14C]-pyruvate kinetics in mice using a six-compartment closed model. Eur. J. Drug Metab. Pharmacokinet. 24, 113–119.

    Article  CAS  PubMed  Google Scholar 

  19. Wu G. (2000): Sensitivity analysis of pharmacokinetic parameters in one-compartment models. Pharmacol. Res. 41, 445–453.

    Article  CAS  PubMed  Google Scholar 

  20. Wu G. (2001): Sensitivity analysis of pharmacodynamic parameters in pharmacodynamic models. Eur. J. Drug Metab. Pharmacokinet. 26, 59–63.

    Article  CAS  PubMed  Google Scholar 

  21. Wu G. (2002): Squared correlation coefficient of measured values versus predicted values in linear and monoexponential regressions. Eur. J. Drug Metab. Pharmacokinet 27, 113, 0117.

    Article  CAS  PubMed  Google Scholar 

  22. Notari R.E. (1987): Biopharmaceutics and clinical pharmacokinetics. 4th edn, New York and Basel: Marcel Dekker, Inc., 222–272.

    Google Scholar 

  23. Tolstov G.P. (1976): Fourier series. Dover Publications, Inc, New York.

    Google Scholar 

  24. Carson E.R., Cobelli C., Finkelstein L. (1983): The mathematical modeling of metabolic and endocrine systems: model formulation, identification, and validation. New York: John Wiley & Sons.

    Google Scholar 

  25. Segre G. (1968): Kinetics of interaction between drugs and biological systems. Il Farmaco 23: 907–918.

    CAS  Google Scholar 

  26. Redheffer R. (1991): Differential equations: theory and applications. Boston: Jones and Bartlett Publishers.

    Google Scholar 

  27. Courant R. (1988): Differential and integral calculus. 2nd edn, New York: Wiley interscience Publishers, vol. 2, 438–442.

    Google Scholar 

  28. Edwards Jr. C.H., Penney D.E. (1989): Elementary differential equations with applications. 2nd edn, New Jersey: Prentice Hall.

    Google Scholar 

  29. Birkhoff G., Rota G.C. (1969): Ordinary differential equations. 2nd edn, Massachusetts, Waltham: Blaisdell Publishing Co.

    Google Scholar 

  30. Spiegel M.R. (1974): Theory and problems of advanced calculus. Schaum’s uotline series. McGraw-Hill Book Company, New York, 83–84.

    Google Scholar 

  31. Desoer C.A., Kuh E.S. (1969): Basic circuit theory. New York, McGraw-Hill Book Company.

    Google Scholar 

  32. Calahan D.A., Macnee A.B., McMahon E.L. (1974): Introduction to modern circuit analysis. Holt, Rinehart & Winston, Inc.

  33. Scott R.E. (1960): Linear circuits. Massachusetts: Addison-Wesley.

    Google Scholar 

  34. Huelsman L.P. (1972): Basic circuit theory with digit computations. New Jersey: Prentice-Hall, Inc.

    Google Scholar 

  35. Peusner L. (1970): Ph. D. Thesis. “The principles of network thermodynamics.” Massachusetts: Harvard University.

    Google Scholar 

  36. Wu G. (1992): Ph.D. Thesis: “Modelling of pharmacokinetic process using theory of electrical circuit.” Moscow: Russian State Medical University (in Russian).

    Google Scholar 

  37. Thakker K.M. (1984): Pharmacokinetic-pharmacodynamic modeling and simulation using the electrical circuit simulation program SPICE2. Biopharm. Drug Dispos. 5, 315–333.

    Article  CAS  PubMed  Google Scholar 

  38. Oken D.E., Thomas S.R., Mikulecky D.C. (1981): A network thermodynamic model of glomerular dynamics: application in the rat. Kidney Int. 19, 359–373.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G. Calculation of steady-state distribution delay between central and peripheral compartments in two-compartment models with infusion regimen. Eur. J. Drug Metab. Pharmacokinet. 27, 259–264 (2002). https://doi.org/10.1007/BF03192336

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192336

Keywords

Navigation