Advertisement

Human liver microsomal metabolism of paclitaxel and drug interactions

  • P. B. Desai
  • J. Z. Duan
  • Y -W. Zhu
  • S. Kouzi
Article

Summary

The aim of this study was to investigate the influence of several anticancer drugs and investigational multidrug resistance (MDR) reversing agents on the hepatic metabolism of paclitaxel (Taxol) to its primary metabolites, 6 α-hydroxypaclitaxel (metabolite, MA) and 3′-p-hydroxypaclitaxel (metabolite, MB). There is significant inter-individual variability associated with the levels of these two metabolites. In many cases, 6α-hydroxypaclitaxel has been observed to be the predominant metabolite, in others, 3′-p-hydroxypaclitaxel has been the principal metabolite. The formation of 6α-hydroxypaclitaxel and 3′-p-hydroxypaclitaxel is catalyzed by cytochrome P450 isozymes CYP2C8 and CYP3A4, respectively. A number of factors, including co-administration of drugs and adjuvants, are known to influence the activity of these isozymes. Therefore, the influence of MDR reversing agents, R-verapamil, cyclosporin A (CsA) and tamoxifen and anti-cancer drugs doxorubicin, etoposide (VP-16) and cisplatin on paclitaxel metabolism was assessed employing human liver microsomes in vitro. Paclitaxel (10 μM) was incubated with human liver microsomes (1 mg protein, −0.34 nmol CYP) in the presence of a NADPH generating system at 37°C for 1 h, with and without the presence of interacting drug. Controls included incubations with quercetin and ketoconazole, known inhibitors of 6α-hydroxypaclitaxel and 3′-p-hydroxypaclitaxel formation, respectively. At the end of the incubation period, paclitaxel and the metabolites were extracted in ethyl acetate and analyzed employing an HPLC method. Significant inhibition of paclitaxel conversion to 6α-hydroxypaclitaxel and 3′-p-hydroxypaclitaxel was observed in the presence of R-verapamil, tamoxifen and VP-16 (P 0.005). Doxorubicin significantly inhibited the formation of 3′-p-hydroxypaclitaxel and CsA inhibited the formation of 6α-hydroxypaclitaxel (P 0.005). This study demonstrates that co-administration of several of the above listed compounds could lead to significant changes in the pharmacokinetics of paclitaxel.

Keywords

Paclitaxel human microsomes hepatic metabolism drug interactions tamoxifen R-verapamil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schiff P.B., Fant J., Horwitz S. (1979): Promotion of microtubule assembly in vitro by taxol. Nature, 277, 665–667.CrossRefPubMedGoogle Scholar
  2. 2.
    Rowinsky E.K., Gilbert M.R., McGuire W.P. et al. (1991): Sequences of taxol and cisplatin: a phase I and pharmacologic studies. J. Clin. Oncol., 9, 1692–1703.PubMedGoogle Scholar
  3. 3.
    Sledge G.W., Robert N., Sparano J.A. et al. (1994): Paclitaxel (Taxol)/doxorubicin combinations in advanced breast cancer: The Eastern Cooperative Oncology Group experience. Semin. Oncol., 21 (suppl. 8), 15–18.PubMedGoogle Scholar
  4. 4.
    Hortobagyi G.N. (1997): Paclitaxel-based combination chemotherapy for breast cancer. Oncology, XX, 29–37.Google Scholar
  5. 5.
    Cresteil T., Monsarrat B., Alvinerie P., Tréluyer J.M.T., Vierira I., Wright M. (1994): Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res., 54, 386–392.PubMedGoogle Scholar
  6. 6.
    Kumar G.N., Walle U.K., Walle T. (1994): Cytochrome P450 3A-mediated human liver microsomal taxol 6 alpha-hydroxylation. J. Pharmacol. Exp. Ther., 268, 1160–1165.PubMedGoogle Scholar
  7. 7.
    Harris J.W., Rahman A., Kim B-R., Guengerich F.P., Collins J.M. (1994): Metabolism of Taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res., 54, 4026–4035.PubMedGoogle Scholar
  8. 8.
    Rahman A., Korekwa K.R., Grogan J., Gonzalez F.J., Harris J.W. (1994): Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res., 54, 5543–5546.PubMedGoogle Scholar
  9. 9.
    Walle T., Walle U.W., Kumar G.N., Bhalla K.N. (1995): Taxol metabolism and disposition in cancer patients. Drug Metab. Dispos., 23, 506–512.PubMedGoogle Scholar
  10. 10.
    Sonnichsen D.S., Liu Q., Schuetz E.G., Schuetz J.D., Pappo A., Relling M.V. (1995): Variability in human cytochrome P450 paclitaxel metabolism. J. Pharmacol. Exp. Ther., 275, 566–575.PubMedGoogle Scholar
  11. 11.
    Sonnichsen D.S., Hurwitz C.A., Pratt C.B., Shuster J.J., Relling M.V. (1994): Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. J. Clin. Oncol. 12, 532–538.PubMedGoogle Scholar
  12. 12.
    Beijnen J.H., Huizing M.T., ten Bokkel W.W. et al. (1994): Bioanalysis, pharmacokinetics and pharmacodynamics of the novel anti-cancer drug paclitaxel (Taxol). Semin. Oncol., 21 (suppl 8), 53–62.PubMedGoogle Scholar
  13. 13.
    Berg S.L., Tolcher A., O’Shaughnessy J.A. et al. (1995): Effect of R-verapamil on the pharmacokinetics of paclitaxel in women with breast cancer. J. Clin. Oncol., 13, 2039–2042.PubMedGoogle Scholar
  14. 14.
    Huizing M.T., Sparreboom A., Rosing H., van Tellingen O., Pinedo H.M., Beijnen J.H. (1995): Quantification of paclitaxel metabolites in human plasma by high-performance liquid chromatography. J. Chromatogr. B: Biomed Appl., 674, 261–268.CrossRefGoogle Scholar
  15. 15.
    Kumar G., Ray S., Walle T. et al. (1995): Comparative in vitro cytotoxic effects of taxol and its major human metabolite 6α-hydroxypaclitaxel. Cancer Chemother. Pharmacol., 36, 129–135.CrossRefPubMedGoogle Scholar
  16. 16.
    Juranka P.F., Zastawny R.I., Ling V. (1989): P-glycoprotein: multidrug resistance and a superfamily of membrane-associated transport proteins. FASEB J., 3: 2583–2592.PubMedGoogle Scholar
  17. 17.
    Horwitz S.B., Lothstein L., Manfredi J.J. et al. (1986): Taxol: Mechanisms of action and resistance. Ann. N.Y. Acad. Sci., 466, 733–744.CrossRefPubMedGoogle Scholar
  18. 18.
    Lum B.L., Fisher G.A., Brophy N.A. et al. (1993): Clinical trials of modulators of multidrug resistance: pharmacokinetic and pharmacodynamic consideration. Cancer, 72, 3502–3514.CrossRefPubMedGoogle Scholar
  19. 19.
    Stuart N.S.A., Philip, P., Harris A.L. et al. (1992): High-dose tamoxifen as an enhancer of etoposide cytotoxicity. Clinical effects and in vitro assessment in P-glycoprotein expressing cell lines. Br. J. Cancer, 66, 833–839.PubMedGoogle Scholar
  20. 20.
    Buckley M.M-T., Goa K.L., Tamoxifen. (1989): A re-appraisal of its pharmacodynamics and pharmacokinetic properties, and therapeutic use. Drugs, 37, 451–490.CrossRefPubMedGoogle Scholar
  21. 21.
    Royer I., Monsarrat B., Sonnier M., Wright M., Cresteil T. (1996): Metabolism of docetaxel by human cytochrome P450: interactions with paclitaxel and other anti-neoplastic agents. Cancer Res., 56, 58–65.PubMedGoogle Scholar
  22. 22.
    Lum B.L., Kaubisch S., Yahanda A.M. et al. (1992): Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporin in a phase I trial to modulate multidrug resistance. J. Clin. Oncol., 10, 1635–1642.PubMedGoogle Scholar
  23. 23.
    Mani C., Gelboin H.V., Park S.S., Pearce R., Parkinson A., Kupfe D. (1993): Metabolism of the antimammary cancer anti-estrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Drug Metab. Dispos., 21, 645–656.PubMedGoogle Scholar
  24. 24.
    Kroemer H.K., Gautier J.C., Beaune P., Henderson C., Wolf C.R., Eichelbaum M. (1993): Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch. Pharmacol., 348, 332–337.CrossRefPubMedGoogle Scholar
  25. 25.
    Lemoine A., Azoulay D., Gries J.M. et al. (1993): Relationship between graft cytochrome P-450 3A content and early morbidity after liver transplantation. Transplantation, 56, 1410–1414.CrossRefPubMedGoogle Scholar
  26. 26.
    Leblanc G.A., Sundseth S.S., Weber G.F., Waxman D.J. (1992): Platinum anti-cancer drugs modulate P450 mRNA levels and differentially alter hepatic drug and steroid metabolism in male and female rats. Cancer Res., 52, 540–547.PubMedGoogle Scholar
  27. 27.
    Relling M.V., Nemec J., Schuetz, E.G., Schuetz J.D., Gonzalez F.J., Korzekwa K.R. (1994): O-demethylation of epidophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol. Pharmacol., 45, 352–358.PubMedGoogle Scholar
  28. 28.
    Kivisko K.T., Kroemer H.K., Eichelbaum M. (1995): The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implication for drug interactions. Br. J. Clin. Pharmacol., 40, 523–530.Google Scholar
  29. 29.
    Lien E.A., Solheim E., Ueland P.M. (1991): Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res., 51, 4837–4844.PubMedGoogle Scholar
  30. 30.
    Hamann S.R., Todd G.R., McAllister R.G. (1983): The pharmacology of verapamil. V. Tissue distribution of verapamil and norverapamil in rat and dog. Pharmacology, 27, 1–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Lesser G.J., Grossman S.A., Eller S., Rowinsky E.K. (1995): The distribution of systemically administered [3H]-paclitaxel in rats: a quantitative autoradiographic study. Cancer Chemother. Pharmacol., 37, 173–178.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • P. B. Desai
    • 1
  • J. Z. Duan
    • 1
  • Y -W. Zhu
    • 1
  • S. Kouzi
    • 2
  1. 1.Division of Pharmaceutical Sciences, College of PharmacyUniversity of Cincinnati Medical CenterCincinnatiUSA
  2. 2.Division of Basic Pharmaceutical Sciences, School of PharmacyNortheast Louisiana UniversityMonroeUSA

Personalised recommendations