Advertisement

The effect of stress on the pharmacokinetics and pharmacodynamics of glibenclamide in diabetic rats

  • M. A. Abd Elaziz
  • A. A. Al-Dhawailie
  • A. Tekle
Article

Summary

Optimal management of the diabetic patient includes normalization of glucose concentration. Attainment of this goal is difficult because stress has long been shown to have a major effect on metabolic activity. The aim of this study was to assess the effect of stress on the pharmacokinetics and dynamics of glibenclamide in normal and diabetic rats. In this respect, administration of glibenclamide (1.4 mg/kg, p.o.) significantly reduced the blood glucose level estimated after an intravenous challenge dose (4 ml/kg) of 50% dextrose. Peak drug effect occurred at about 2 h in the control on diabetic group and this effect was clearly evident over a 6 h period in the diabetic group. The stressed diabetic group showed consistently higher blood glucose level at all time points than the non-stressed diabetic controls. Stress was also associated with significant reductions in glibenclamide Cp-max and AUC0−8 and an increase in the Tmax. These results suggest that the response to glibenclamide in diabetics may be strongly modified by stress through a number of mechanisms. Changes in the bioavailability of the drug and activation of sympathetic nervous system and the hypothalamic-pituitary-adrenocortical axis are potential candidates. Further clinical and experimental studies in relevant models may, however, be needed to characterize fully and relate this effect to rational pharmacotherapy of type II diabetes.

Keywords

Diabetes stress glibenclamide pharmacodynamics pharmacokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kovar M.G., Harris M.I., Hadden W. et al. (1987): The scope of diabetes in the United States population. Am. J. Public Health, 77, 1549–1550.CrossRefPubMedGoogle Scholar
  2. 2.
    Pohl S.L., Gonder-Frederick L.A., Cox D.G. (1994): Diabetes mellitus: an overview. Behav. Med. Update, 6, 3–7.Google Scholar
  3. 3.
    Richard S.S., Mark S.S., Mark N.F. (1992): Stress and diabetes mellitus. Diabetes Care, 15, 1413–1422.CrossRefGoogle Scholar
  4. 4.
    Guillemin R. (1978): Hypothalamus, hormones and physiological regulation. In: Debbs-Robin E. (Ed.) Claude Bernard and the internal environment. A memorial symposium. New York: Dekker, 137–156.Google Scholar
  5. 5.
    Motoo Y., Yutaka G., Ryozo Oishi. (1991): Influence of foot shock stress on pharmacokinetics of microrandil in rats. Life Sci., 48, 2065–2073.CrossRefGoogle Scholar
  6. 6.
    Mikat E.M., HacKel D.B., Cruz P.T., Lebovit Z.H.E. (1972): Lower glucose tolerance in the sand rat (Psammonys obesus) resulting from esophageal intubation. Proc. Soc. Exp. Biol. Med., 139, 1390–1391.PubMedGoogle Scholar
  7. 7.
    Jaber L.A., Lewis N.J., Slaughter R.L., Neole A.V. (1993): The effect of stress of glycemic control in patients with type II diabetes during glyburide and glipizide therapy. J. Clin. Pharmacol., 33, 239–245.PubMedGoogle Scholar
  8. 8.
    Turner N.C., White P. (1996): Effects of streptozotocin-induced diabetes on vascular reactivity in genetically hyperinsulinaemic obese Zucker rats. J. Cardiovasc. Pharmacol., 27, 884–890CrossRefPubMedGoogle Scholar
  9. 9.
    Tekle A., Al-Khamis I. (1990): Phenytoin bupropion interaction: effect on plasma phenytoin concentration in the rat. J. Pharm. Pharmacol., 42, 799–801.PubMedGoogle Scholar
  10. 10.
    Gamallo A., Alario P., Gonzalez Abad M.J., Villanua M.A. (1992): Acute noise stress, ACTH administration, and blood pressure alteration. Physiol. Behav., 51, 1201–1205.CrossRefPubMedGoogle Scholar
  11. 11.
    Al-Dhawailie A.A., Abdulaziz M.A., Tekle A., Matar K.M. (1995): A simple specific and rapid high performance liquid chromatographic assay for glibenclamide in plasma. J. Liquid Chromatogr., 18, 3981–3990.CrossRefGoogle Scholar
  12. 12.
    Clutter W.E., Bier D.M., Shah S.D., Cryer P.E. (1980): Epinephrine plasma metabolic clearance rate, and physiologic thresholds for metabolic and hemodynamic actions in man. J. Clin. Invest., 66, 74–101.CrossRefGoogle Scholar
  13. 13.
    Williams R.H., Porte D. (1974): The pancreas. In: Williams R.H. (Ed.) Textbook of Endocrinology, 5th edn. Philadelphia, PA: Saunders, 502–526.Google Scholar
  14. 14.
    Landsberg L., Young J.B. (1985): Sympathoadrenal system: the regulation of metabolism. In: Ingbar S.H. (Ed.) Contemporary endocrinology, vol. 2. New York: Plenum, 217–246.Google Scholar
  15. 15.
    Leahy J.L. (1990): Natural history of B-cell dysfunction in NIDDM. Diabetes Care, 13, 992–1010.CrossRefPubMedGoogle Scholar
  16. 16.
    Unger R.H., Grundy S. (1985): Hyperglycemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia, 28, 119–121.CrossRefPubMedGoogle Scholar
  17. 17.
    Surwit R.S., Feinglos M.N. (1988): Stress and autonomic nervous system in type II diabetes, a hypothesis. Diabetes Care, 11, 83–85.PubMedGoogle Scholar
  18. 18.
    Surwit R.S., Feinglos M.N., Livingston E.G., Kuhn C.M., McCubbin J.A. (1984): Behavioral manipulation of the diabetic phenotype inoblob mice. Diabetes, 33, 616–618.CrossRefPubMedGoogle Scholar
  19. 19.
    Melesky C.H., Lewis S.B., Woodruff R.E. (1973): Glucogon level during anesthesia and surgery in normal diabetic patients [Abstract]. Diabetes, 27, 492.Google Scholar
  20. 20.
    Robertson P.R., Halter J.B., Porte D. (1976): A role of alpha-adrenergic receptors in abnormal insulin secretion in diabetes mellitus. J. Clin. Invest., 57, 791–795.CrossRefPubMedGoogle Scholar
  21. 21.
    Kashiwagi A., Harano Y., Suzuki M. et al. (1986): New alpha2-adrenergic blocker (DG-5128) improves insulin secretion and in vivo glucose disposal in NIDDM patients. Diabetes, 35, 1085–1089.CrossRefPubMedGoogle Scholar
  22. 22.
    Naliboff B.D., Cohen M.J., Sowers J.D. (1985): Physiological and metabolic responses to brief stress in non-insulin dependent diabetic and control subjects. J. Psychosom. Res., 29, 367–374.CrossRefPubMedGoogle Scholar
  23. 23.
    Armario A., Martio O., Gaualda A. (1992): Negative feedback of corticosterone on the pituitary-adrenal axis is maintained after inhibition of serotonin synthesis with parachlorophenylalanine. Brain Res. Bull., 28, 915–918.CrossRefPubMedGoogle Scholar
  24. 24.
    Brechi M.C., Scatizzi R., Martinotti E., Pellegrini A., Soldani P., Paparelli A. (1994): Morphofunctional changes in the non-adrenergic innervation of the rat cardiovascular system after varying duration of noise stress. Int. J. Neurosci., 75, 73–81.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • M. A. Abd Elaziz
    • 1
  • A. A. Al-Dhawailie
    • 1
  • A. Tekle
    • 1
  1. 1.Department of Clinical Pharmacy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations