Skip to main content
Log in

Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim is to investigate the influence of the antidiabetic drug gliclazide on the ileal permeation of the semisynthetic bile acid, MKC, in tissues from healthy and diabetic rats. Sixteen Wistar rats (350±50 g) were randomly allocated into four groups (4 rats per group, 8 chambers per rat i.e. n=32) two of which were made diabetic (given alloxan i.v.30 mg/kg). Group 1 was used to measure the permeation of MKC (50 μg/ml) alone (control) while group 2 to measure MKC permeation in the presence of gliclazide (200μg/ml). The diabetic groups 3 (gliclazide) and 4 (MKC+gliclazide) were treated in the same way. Rats were sacrificed and tissues were mounted into the Ussing chamber for the measurement of MKC mucosal to serosal (absorptive) and serosal to mucosal (secretory) fluxes. In healthy tissues, gliclazide reduced MKC absorptive flux (p<0.01) and increased its secretory flux (p<0.01). In diabetic tissues, gliclazide had no effect on either the absorptive or the secretory fluxes of MKC. The lack of effect of gliclazide on MKC permeation in diabetic tissues suggests the absence or suppressed drug transporters. Furthermore, gliclazide inhibition of MKC absorptive flux and induction of MKC secretory flux in healthy tissues may result from the selective inhibition of an efflux drug transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Yaris F., Yaris E., Kadioglu M., Ulku C, Kesim M., Kalyoncu N.I. (2004): Normal pregnancy outcome following inadvertent exposure to rosiglitazone, gliclazide, and atorvastatin in a diabetic and hypertensive woman. Reprod. Toxicol., 18, 619–621.

    PubMed  CAS  Google Scholar 

  2. Rendell M. (2004): The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 64, 1339–1358.

    Article  PubMed  CAS  Google Scholar 

  3. Faure P., Rossini E., Wiernsperger N., Richard M.J., Favier A., Halimi S. (1999): An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats. Diabetes, 48, 353–357.

    Article  PubMed  CAS  Google Scholar 

  4. Nöda Y., Mori A., Packer L. (1997): Gliclazide scavenges hydroxyl, superoxide and nitric oxide radicals: an ESR study. Res. Commun. Mol. Pathol. Pharmacol., 96, 115–124.

    PubMed  Google Scholar 

  5. Florkowski CM., Richardson M.R., Le Guen C, Jennings P.E., O’Donnell M.J., Jones A.F., et al. (1988): Effect of gliclazide on thromboxane B2, parameters of haemostasis, fluorescent IgG and lipid peroxides in non-insulin dependent diabetes mellitus. Diabetes Res., 9, 87–90.

    PubMed  CAS  Google Scholar 

  6. Stetinova V., Kvetina J., Pastera J., Polaskova A., Prazakova M. (2007): Gliclazide: pharmacokinetic-pharmacodynamic relationships in rats. Biopharm. Drug Dispos., 28, 241–248.

    Article  PubMed  CAS  Google Scholar 

  7. Al-Salami H., Butt G., Tucker I., Mikov M. (2009): The influence of probiotics pre-treatment, on gliclazide PKs and glucose levels in healthy and diabetic rats. Eur. J. Drug Metabol. Pharmacokinet. In press.

  8. Tsiani E., Ramlal T., Leiter LA., Klip A., Fantus I.G. (1995): Stimulation of glucose uptake and increased plasma membrane content of glucose transporters in L6 skeletal muscle cells by the sulfonylureas gliclazide and glyburide. Endocrinology, 136,2505–2312.

    Article  PubMed  CAS  Google Scholar 

  9. Mikov M., Al-Salami H., Fawcett J.P. (2008): The influence of 3a,7a-dihydroxy-12-keto-5β-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes. Eur. J. Drug Metabol. Pharmacokinet., 33, 137–142.

    Article  CAS  Google Scholar 

  10. Garcia-Bournissen F., Feig D.S., Koren G. (2003): Maternalfetal transport of hypoglycaemic drugs. Clin. Pharmacokinet., 42, 303–313.

    Article  PubMed  CAS  Google Scholar 

  11. Campbell D.B., Lavielle R., Nathan C. (1991): The mode of action and clinical pharmacology of gliclazide: a review. Diabetes Res. Clin. Pract., 14(Suppl 2), S21–36.

    Article  Google Scholar 

  12. Smith C.L., Hammond G.L. (1991): An amino acid substitution in biobreeding rat corticosteroid binding globulin results in reduced steroid binding affinity. J. Biol. Chem., 266, 18555–18559.

    PubMed  CAS  Google Scholar 

  13. Werle M., Hoffer M. (2006): Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J. Control. Release, 111(1–2), 41–46.

    Article  PubMed  CAS  Google Scholar 

  14. Al-Salami H., Butt G., Tucker I., Mikov M. (2008): Influence of the semisynthetic bile acid (MKC) on the ileal permeation of gliclazide in healthy and diabetic rats. Pharmacol. Rep., In press.

  15. Li J., Hidalgo I.J. (1996): Molecular modeling study of structural requirements for the oligopeptide transporter. J. Drug Target, 4, 9–17.

    Article  PubMed  CAS  Google Scholar 

  16. Al-Salami H., Butt G., Tucker I., Mikov M. (2008): Influence of the semisynthetic bile acid MKC on the Ileal Permeation of Gliclazidein vitro in Healthy and Diabetic Rats treated with Probiotics. Methods Find. Exp. Clin. Pharmacol., 30(2), 1–7.

    Article  CAS  Google Scholar 

  17. Chan L.M., Lowes S., Hirst B.H. (2004): The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sei., 21, 25–51.

    Article  CAS  Google Scholar 

  18. Lucas M.L. (2005): Amendments to the theory underlying Ussing chamber data of chloride ion secretion after bacterial enterotoxin exposure. J. Theor. Biol., 234, 21–37.

    Article  PubMed  CAS  Google Scholar 

  19. Hunter J., Hirst B.H. (1997): Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv. Drug Del. Rev., 25, 129–157.

    Article  CAS  Google Scholar 

  20. Evers R., Kool M., van Deemter L., Janssen H., Calafat J., Oomen L.C, et al. (1998): Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J. Clin. Invest., 101, 1310–1319.

    PubMed  CAS  Google Scholar 

  21. Fromm M., Kauffamnn H., Fritz P., Burk O., Kroemer H., Warzok R., et al. (2000): The effect of rifampin treatment on intestinal expression of human MRP transporters. Am. J. Pathol., 157, 1575–1580.

    PubMed  CAS  Google Scholar 

  22. Sauna Z., Smith M., Müller M., Kerr K., Ambudkar S. (2001): The mechanism of action of Multidrug-resistancelinked P-glycoprotein. J. Bioenerg. Biomembran., 33, 481–491.

    Article  CAS  Google Scholar 

  23. Ito K., Suzuki H., Horie T., Sugiyama Y. (2005): Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm. Res., 22, 1559–1577.

    Article  PubMed  CAS  Google Scholar 

  24. St-Pierre M.V., Kullak-Ublick G.A., Hagenbuch B., Meier P.J. (2001): Transport of bile acids in hepatic and non-hepatic tissues. J. Exp. Biol., 204, 1673–1686.

    PubMed  CAS  Google Scholar 

  25. Zelcer N., van de Wetering K., Hillebrand M., Sarton E., Kuil A., Wielinga P.R., et al. (2005): Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc. Natl. Acad. Sei. USA, 102, 7274–7279.

    Article  CAS  Google Scholar 

  26. Zollner G., Marschall H.U., Wagner M., Trauner M. (2006): Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm., 3, 231–251.

    Article  PubMed  CAS  Google Scholar 

  27. Miljkovic D., Kuhajda K., J. H. (1996): Selective C-12 oxidation of cholic acid. Chem. Res., 2, 106–107.

    Google Scholar 

  28. Mikov M., Boni N.S., Al-Salami H., Kuhajda K., Kevresan S., Golocorbin-Kon S., et al. (2007): Bioavailability and hypoglycemic activity of the semisynthetic bile acid salt, sodium 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate, in healthy and diabetic rats. Eur. J. Drug Metabol. Pharmacokinet., 32, 7–12.

    Article  CAS  Google Scholar 

  29. DeCarvalhoI E., CarvalhoII N., Ferreira. L. (2003): Experimental model of induction of diabetes mellitus in rats. Acta Cirurgica Brasileira, 18, 120–167.

    Google Scholar 

  30. Butt A.G., Mathieson S.E., McLeod B.J. (2002): Electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula: indications of novel transport patterns in a marsupial. J. Comp. Physiol. [B] 172,495–502.

    CAS  Google Scholar 

  31. Boisset M., Botham R.P., Haegele K.D., Lenfant B., Pachot J.I. (2000): Absorption of angiotensin II antagonists in Ussing chambers, Caco-2, perfused jejunum loop and in vivo: importance of drug ionisation in the in vitro prediction of in vivo absorption. Eur. J. Pharm. Sei., 10, 215–224.

    Article  CAS  Google Scholar 

  32. Mäher S., Feighery L., Brayden D.J., McClean S. (2007): Melittin as a permeability enhancer II: in vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae. Pharm. Res., 24, 1346–1356.

    Article  PubMed  CAS  Google Scholar 

  33. Sun Y.Q., Soderholm J.D., Petersson F., Borch K. (2004): Long-standing gastric mucosal barrier dysfunction in Helicobacter pylori-induced gastritis in mongolian gerbils. Helicobacter, 9, 217–227.

    Article  PubMed  CAS  Google Scholar 

  34. Venkatraman A., Ramakrishna B.S., Pulimood A.B., Patra S., Murthy S. (2000): Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate. Scand. J. Gastroenterol., 35, 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  35. Bodo A., Bakos E., Szeri F., Varadi A., Sarkadi B. (2003): Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. J. Biol. Chem., 278, 23529–23537.

    Article  PubMed  CAS  Google Scholar 

  36. Zelcer N., Saeki T., Bot I., Kuil A., Borst P. (2003): Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem. J., 369, 23–30.

    Article  PubMed  CAS  Google Scholar 

  37. Zollner G., Fickert P., Fuchsbichler A., Silben D., Wagner M., Arbeiter S., et al. (2003): Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J. Hepatol., 39, 480–488.

    Article  PubMed  CAS  Google Scholar 

  38. Cvetkovic M., Leake B., Fromm M.F., Wilkinson G.R., Kim R.B. (1999): OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos., 27, 866–871.

    PubMed  CAS  Google Scholar 

  39. Mita S., Suzuki H., Akita H., Hayashi H., Onuki R., Hofmann A.F., et al. (2006): Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab. Dispos., 34, 1575–1581.

    Article  PubMed  CAS  Google Scholar 

  40. Ballatori N., Christian W.V., Lee J.Y., Dawson P.A., Soroka C.J., Boyer J.L., et al. (2005): OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology, 42, 1270–1279.

    Article  PubMed  CAS  Google Scholar 

  41. Houten S., Watanabe M., Auwerx J. (2006): Endocrine functions of bile acids. EMBO J., 25, 1419–1425.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Salami, H., Butt, G., Tucker, I. et al. Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats. Eur. J. Drug Metabol. Pharmacokinet. 34, 43–50 (2009). https://doi.org/10.1007/BF03191383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191383

Key words

Navigation