Skip to main content

Advertisement

Log in

Alu tandem sequences inhibit GFP gene expression by triggering chromatin wrapping

  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Alu elements belonging to the short interspersed nuclear elements (SINE) of repetitive elements are present in more than one million copies which altogether represent 10% of the whole human genome. In this study, the roles ofAlu tandem sequences in the process of GFP gene (GFP) expression and packing into chromatin of its DNA were studied. To detect the effect ofAlu repeats on gene expression, different copies ofAlus were insertedGFP downstream respectively in pEGFP-C1 vector. We found thatAlu sequences decreased the amount ofGFP transcription, the percentage of GFP positive cells and the accessibility to DNase I in length-dependent manner. InsertingAlu caused the production of higher-molecular-mass RNA, indicatingAlu sequence did not induce premature transcriptional termination. Tight packing chromatins keep silent and resist to DNase I digestion, which is a general phenomenon. We suggested that head and tail tandemAlu sequences suppressedGFP expression in length dependent manner by triggering chromatin packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleman C, Ray-Engel AM, Shaikh TH andDeininger PL (2000)Cis-acting influences onAlu RNA levels. Nucleic Acids Res. 28: 4755–4761.

    Article  CAS  PubMed  Google Scholar 

  • Ambor JE, Mennone J, Coon ME, Hanke JH andKavathas P (1993) Identification and characterization of anAlu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol. Cell Biol. 13: 7056–7070.

    Google Scholar 

  • Anke JH, Hambor JE andKavathas P (1995) RepetitiveAlu elements form a cruciform structure that regulates the function of the human CD8 [alpha] T cell-specific enhancer. J. Mol. Bio. 246: 63–73.

    Article  Google Scholar 

  • Bancroft JD, Schaefer LA andDegen SJ (1990) Characterization of theAlu-rich 5-flanking region of the human prothrombin-encoding gene: identification of a positive cis-acting element that regulates liverspecific expression. Gene 95: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Batzer MA andDeininger PL (2002)Alu repeats and human genomic diversity. Nature Reviews Genet. 3: 370–379.

    Article  CAS  Google Scholar 

  • Brosius J (1999) RNAs from all categories generate retrosequences that may be exapted a novel genes or regulatory elements. Gene 238: 115–134.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lowrey CH andStamatoyannopoulos G (1997) Analysis of enhancer function of the HS-40 core sequence of the human [alpha]-globin cluster. Nucleic Acids Res. 25: 2917–1922.

    Article  CAS  PubMed  Google Scholar 

  • Chu WM, Ballard R, Carpick BW, Williams BR andSchmid CW (1998) PotentialAlu function: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol. Cell. Biol. 18: 58–68.

    CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C andHeidmann T (2003) LINEmediated retrotransposition of markedAlu sequences. Nature Genet. 35: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Ebihara M, Ohba H, Ohno SI andYoshikawa T (2002) Genomic organization and promoter analysis of the human nicotinic acetylcholine receptor a6 subunit (CHNRA6) gene:Alu and other elements direct transcriptional repression. Gene 298: 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Englander EW andHoward BH (1995) Nucleosome positioning by humanAlu elements in chromatin. J. Biol. Chem. 270: 10091–10096.

    Article  CAS  PubMed  Google Scholar 

  • Englander EW, Wolffe AP andHoward BH (1993) Nucleosome interactions with a human Alu element. Transcriptional repression and effects of template methylation. J. Biol. Chem. 268: 19565–19573.

    CAS  PubMed  Google Scholar 

  • Ganapathi M, Srivastava P, Kumar S, Sutar D, Kumar K, Dasgupta D, Singh GP, Brahmachari V andBrahmachari SK (2005) Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinformatics 6: 126–137.

    Article  PubMed  Google Scholar 

  • Gonzáleza CI, Bhattacharyaa A andWanga W (2001) Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274: 15–25.

    Article  Google Scholar 

  • Hamdi H, Nishio H, Zielinski R andDugaiczyk A (1999) Origin and phylogenetic distribution ofAlu DNA repeats: irreversible events in the evolution of primates. J. Mol. Biol. 289: 861–871.

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Szak ST andBoeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429: 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Häsler J andStrub K (2006a)Alu elements as regulators of gene expression. Nucleic Acids Res. 34: 5491–5497.

    Article  PubMed  Google Scholar 

  • Häsler J andStrub K (2006b)Alu RNP andAlu RNA regulate translation initiation in vitro. Nucleic Acids Res. 34: 2374–2385.

    Article  PubMed  Google Scholar 

  • Higgs DR, Wood WG, Jarman AP, Sharpe J, Lida J, Pretorius IM andAyyub H (1990) A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes. Dev. 4: 1588–1601.

    Article  CAS  PubMed  Google Scholar 

  • Hong KW, Huh JW, Kim DS, Ha HS andKim HS (2007) Molecular Relationship of Hylobates Based on Alu Elements of the Y Chromosome. Korean J. Genetic. 29: 379–387.

    CAS  Google Scholar 

  • Lev-Maor G, Sorek R, Shomron N andAst G (2003) The birth of an alternatively spliced exon: 3′ splice-site selection inAlu exons. Science 300: 1288–1291.

    Article  CAS  PubMed  Google Scholar 

  • Okano K, Zhang Q, Kimura S, Narita J, Tanaka T, Fukuda H andKondo A (2008) System using tandem repeats of the cA peptidoglycan-binding domain from Lactococcus lactis for display of both N- and C-terminal fusions on cell surfaces of lactic acid bacteria. Appl. Environ. Microbiol. 74: 1117–1123.

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE, Crick FH andSapienza C (1980) Selfish DNA. Nature 288: 645–646.

    Article  CAS  PubMed  Google Scholar 

  • Polak P andDomany E (2006)Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 7: 133–148.

    Article  PubMed  Google Scholar 

  • Qumsiyeh MB (1999) Structure and function of the nucleus: anatomy and physiology of chromatin. Cell Mol. Life Sci. 55: 1129–1140.

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Ast G andGraur D (2002)Alu-containing exons are alternatively spliced. Genome Res. 12: 1060–1067.

    Article  CAS  PubMed  Google Scholar 

  • Stamatoyannopoulos JA, Goodwin A, Joyce T andLowrey CH (1995) NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 14: 106–116.

    CAS  PubMed  Google Scholar 

  • Szmulewicz MN, Novick GE andHerrera RJ (1998) Effects ofAlu insertions on gene function. Electrophoresis 19: 1260–1264.

    Article  CAS  PubMed  Google Scholar 

  • Tomilin NV (1999) Control of genes by mammalian retroposons. Int. Rev. Cytol. 186: 1–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XF., Wang, X., Liu, J. et al. Alu tandem sequences inhibit GFP gene expression by triggering chromatin wrapping. Genes & Genomics 31, 209–215 (2009). https://doi.org/10.1007/BF03191192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191192

Key words

Navigation