Skip to main content
Log in

Evaluation of statistical power function for various diclofenac bioequivalence trials with different subject numbers

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

This study presents application of statistical power function for thet-test and ANOVAF-test on the evaluation of diclofenac bioequivalence in trials with the wide variations in sample sizes (N=12, 18 and 24). The power function, together with appropriate equations tables and figures, is used to calculate the power of the ANOVA for crossover design, the number of subjects for a given value of power and the minimum detectable difference in treatment means for different pharmacokinetic parameters of the formulations. The power of the trial with a small, sample size (N=12) to detect 20% differences between diclofenac formulations is shown to be more than 0.9 and almost the same as the power of the trial with a large sample size (N=24). In all trials for all pharmacokinetic parameters the power to detect 20% difference is shown to be more than 0.8. For the power of 0.8, the needed subject number to detect 20% difference in treatment means is the same or smaller than used and the minimum detectable difference is smaller than 20% in all our trials. This investigation shows that bioequivalence studies with small number of subjects (N=12) may be quite adequate for valid conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pidgen A.W. (1992): Statistical aspects of bioequivalence — a review. Xenobiotica, 22, 881–893.

    Article  CAS  PubMed  Google Scholar 

  2. Shuirmann D.J. (1987): A comparison of the two one-sided test procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokin. Biopharm., 15, 657–680.

    Article  Google Scholar 

  3. Heck H.A., Buttrill S.E., Flynn N.W., Dyer R.L., Anbar M., Cairns T., Dighe S., Cabana B.E. (1979): Bioavailability of imipramine tablets relative to a stable isotope-labeled internal standard: increasing the power of bioavailability tests. J. Pharmacokin. Biopharm., 7, 233–248.

    Article  CAS  Google Scholar 

  4. Ogata H., Zugarni S., Ejima A., Kawatsu Y. (1983): Bioavailability of two preparations of furosemide and their pharmacological activity in normal volunteers. Eur. J. Clin. Pharmacol, 24, 791–796.

    Article  CAS  PubMed  Google Scholar 

  5. Godbillon J, Gauron S., Matayer J.P. (1985): High-performance liquid chromatographic determination of diclofenac and its monohydroxylated metabolites in biological fluids. J. Chromatogr., 338, 151–159.

    Article  CAS  PubMed  Google Scholar 

  6. Wagner J.G. (1975): Fundamentals of clinical pharmacokinetics. Hamilton: Drug intelligence publications, 301–305.

    Google Scholar 

  7. Pearson E.S., Hartley H.O. (1951): Charts of power function for analysis of variance tests, derived from the non-centralF-distribution. Biometrika, 38, 112–130.

    CAS  PubMed  Google Scholar 

  8. Dixon W.J., Massey F.J. (1957): Introduction to statistical analysis. New York: McGrow-Hill.

    Google Scholar 

  9. Bailey D.E. (1971): Probability and statistics: models for research. New York: John Wiley & sons.

    Google Scholar 

  10. Kolodziejczyk S. (1935): On an important class of statistical hypotheses. Biometrika, 27, 161–190.

    Google Scholar 

  11. Johnson N.L., Welch B.L. (1940): Applications of the noncentralt-distribution. Biometrika, 31, 362–389.

    Google Scholar 

  12. Lehmer E. (1944): Inverse tables of probabilities of errors of the second kind. Ann. Math. Statist., 15, 388–398.

    Article  Google Scholar 

  13. Hartley H.O. (1944): Studentization or the elimination of the standard deviation of the parent population from the random sample-distribution of statistics. Biometrika, 33, 173–180.

    Google Scholar 

  14. Johnson N.L. (1948): Alternative systems in the analysis of variance. Biometrika, 35, 80–87.

    CAS  PubMed  Google Scholar 

  15. Patnaik P.B. (1949): The non-central ξ2- andF-distributions and their applications. Biometrika, 36, 202–232.

    CAS  PubMed  Google Scholar 

  16. Lord E. (1950): Power of the modifiedt-est (u-test) based on range. Biometrika, 37, 64–77.

    CAS  PubMed  Google Scholar 

  17. Lötsch J., Kettenmann B., Renner B., Drover D., Brune K., Geisslinger G., Kobla G. (2000): Population pharmacokinetics of fast oral diclofenac in healthy volunteers, relation to pharmacodynamics in an experimental pain model. Pharm. Res., 17, 77–84.

    Article  PubMed  Google Scholar 

  18. Manzen H.O., Sameer N.N., El-Sayed S. (2006): A two-way cross-over bioequivalence study comparing two products of diclofenak sodium suppositories in healthy human volunteers. Basic Clin. Pharmacol. Toxicol., 31, 87–96.

    Google Scholar 

  19. Popović J., Mikov M., Jakovljević V. (1992): Pharmacokinetics of ticlopidine derived from a new tablet formulation, Acta Biol. Med. Exp., 17, 49–52.

    Google Scholar 

  20. Popović J., Mikov M., Jakovljević V. (1993): Pharmacokinetics and systemic availability of a new metoprolol retard formulation. Eur. J. Drug Metabol. Pharmacokinet., Special Issue.

  21. Popović J., Mikov M., Jakovljević V. (1994): Pharmacokinetic analysis of a new acenocoumarol tablet formulation during a bioequivalence study. Eur. J. Drug Metabol. Pharmacokinet., 19, 85–89.

    Article  Google Scholar 

  22. Popović J., Mikov M., Jakovljević V. (1995): Pharmacokinetics of carbamazepine derived from a new tablet formulation. Eur. J. Drug Metabol. Pharmacokinet., 20, 297–300.

    Article  Google Scholar 

  23. Popović J. (2006): Spline functions in convolutional modeling of verapamil bioavailability and bioequivalence. I: conceptual and numerical issues. Eur. J. Drug Metabol. Pharmacokinet., 31, 79–86.

    Google Scholar 

  24. Popović J., Mitić R., Sabo A., Mikov M., Jakovljević V., Daković-Švajcer K. (2006): Spline functions in convolutional modeling of verapamil bioavailability and bioequivalence. II: study in healthy volunteers. Eur. J. Drug Metabol. Pharmacokinet., 31, 87–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, J., Mikov, M., Sabo, A. et al. Evaluation of statistical power function for various diclofenac bioequivalence trials with different subject numbers. Eur. J. Drug Metabol. Pharmacokinet. 34, 85–91 (2009). https://doi.org/10.1007/BF03191156

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191156

Key words

Navigation