Advertisement

Genes & Genomics

, Volume 31, Issue 1, pp 73–83 | Cite as

Association analysis of v-AKT murine thymoma viral oncogene homolog 1 (AKT1) polymorphisms and type 2 diabetes mellitus in the Korean population

  • Hyun-Seok Jin
  • Kyung-Won Hong
  • Ji-Eun Lim
  • Gi-Ja Lee
  • Jong Ho Han
  • Min-Jin Go
  • Jong-Young Lee
  • Jeong-Taek Woo
  • Hun Kuk Park
  • Bermseok OhEmail author
Article
  • 126 Downloads

Abstract

V-AKT murine thymoma viral oncogene homolog 1 (AKT1) is an important downstream target of the insulin-signaling pathway and may be an important regulator of pancreatic beta cell growth. This study investigated the association of theAKT1 gene with susceptibility to type 2 diabetes mellitus and its related traits. By sequencing theAKT1 gene in 24 unrelated individuals, we iden-tified 32 genetic variations including 30 single nucleotide polymorphisms and 2 deletions. For the association analysis, we selected seven single nucleotide polymorphisms (rs10138227, −726G>A; rs3730358, +12574C>T; rs2494737, +12656T>A; rs2498796, +15761T>C; rs2498799, +19087 A>G; rs2494732, +19789G>A; rs3803304, +19835G>C) based on minor allele frequency (>0.05) and linkage disequilibrium status. The study included 483 type 2 diabetes patients (206 men and 277 women with mean age 64±2.8 years and mean age at onset 56 ± 8.1 years) and 1,138 non-diabetic control subjects (516 men and 622 women with mean age 64 ±2.9 years). Two single nucleotide polymorphisms (rs2498796, +15761T>C and rs2494732, +19789G>A) were found to be associated with risk of type 2 diabetes mellitus, and showed an increased risk of type 2 diabetes mellitus in a recessive model (OR=1.343, 95% CI 1.021–1.765,p=0.035 and OR=1.534, 95% CI 1.058–2.225,p=0.024, respectively). These SNPs were also associated with diabetes-related traits such as levels of fasting blood glucose and hemoglobin A1c. In addition, type 2 diabetes mellitus patients who also have dyslipidemia or high blood pressure showed significant association with single nucleotide polymorphisms in AKT1 when compared with healthy controls. These results indicate that genetic variation in AKT1 influences the development of type 2 diabetes mellitus in the Korean population.

Key words

T2DM AKT1 insulin-signaling pathway single nucleotide polymorphism dyslipidemia high blood pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti KG andZimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15: 539–553.CrossRefPubMedGoogle Scholar
  2. Alessi DR, James SR, Dowries CP, Holmes AB, Gatfney PR, Reese CB andCohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7: 261–269.CrossRefPubMedGoogle Scholar
  3. Bandyopadhyay G, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, Karnam P, Moscat J andFarese RV (1997) Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J. Biol. Chem. 272: 2551–2558.CrossRefPubMedGoogle Scholar
  4. Barrett JC, Fry B, Maller J andDaly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.CrossRefPubMedGoogle Scholar
  5. Behar DM, Metspalu E, Kivisild T, Achilli A, Hadid Y, Tzur S, Pereira L, Amorim A, Quintana-Murci L, Majamaa K, Herrnstadt C, Howell N, Balanovsky O, Kutuev I, Pshenichnov A, Gurwitz D, Bonne-Tamir B, Torroni A, Villems R andSkorecki K (2006) The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event. Am. J. Hum. Genet. 78: 487–497.CrossRefPubMedGoogle Scholar
  6. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Un A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL andThomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439–444.CrossRefPubMedGoogle Scholar
  7. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q Crenshaw EB, 3rd,Kaestner KH, Bartolomei MS, Shulman GI andBirnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292: 1728–1731.CrossRefPubMedGoogle Scholar
  8. Cong LN, Chen H, Li Y, Zhou L, McGibbon MA, Taylor SI andQuon MJ (1997) Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol. Endocrinol. 11: 1881–1890.CrossRefPubMedGoogle Scholar
  9. DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37: 667–687.PubMedGoogle Scholar
  10. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M andGogos JA (2004) Convergent evidence for impaired AKTlGSK3beta signaling in schizophrenia. Nat. Genet. 36: 131–137.CrossRefPubMedGoogle Scholar
  11. Franke TF, Kaplan DR andCantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88: 435–437.CrossRefPubMedGoogle Scholar
  12. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A andSessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399: 597–601.CrossRefPubMedGoogle Scholar
  13. Furnari FB, Huang HJ andCavenee WK (1998) The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive Gl growth arrest in glio ma cells. Cancer Res. 58: 5002–5008.PubMedGoogle Scholar
  14. Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, McNeish JD andColeman KG (2003) Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Invest. 112: 197–208.PubMedGoogle Scholar
  15. Hemmings BA (1997) Akt signaling: linking membrane events to life and death decisions. Science 275: 628–630.CrossRefPubMedGoogle Scholar
  16. Inoue G, Cheatham B andKahn CR (1996) Different pathways of postreceptor desensitization following chronic insulin treatment and in cells overexpressing constitutively active insulin receptors. J. Biol. Chem. 271: 28206–28211.CrossRefPubMedGoogle Scholar
  17. Kozka IJ, Clark AE andHolman GD (1991) Chronic treatment with insulin selectively down-regulates cell-surface GLUT4 glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 266: 11726–11731.PubMedGoogle Scholar
  18. Lingohr MK, Buettner R andRhodes CJ (2002) Pancreatic betacell growth and survivala role in obesitylinked type 2 diabetes? Trends Mol. Med. 8: 375–384.CrossRefPubMedGoogle Scholar
  19. Lingohr MK, Dickson LM, Wrede CE, Briaud I, McCuaig JF, Myers MG, Jr. andRhodes CJ (2003) Decreasing 1RS-2 expression in pancreatic beta-cells (INS-1) promotes apoptosis, which can be compensated for by introduction of IRS-4 expression. Mol. Cell. Endocrinol. 209: 17–31.CrossRefPubMedGoogle Scholar
  20. Livak KJ (1999) Allelic chscrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14: 143–149.Google Scholar
  21. Marte BM andDownward J (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22: 355–358.CrossRefPubMedGoogle Scholar
  22. Matsubara A, Wasson JC, Donelan SS, Welling CM, Glaser B andPermutt MA (2001) Isolation and characterization of the human AKTl gene, identification of 13 single nucleotide polymorphisms (SNPs), and their lack of association with Type II diabetes. Diabetologia 44: 910–913.CrossRefPubMedGoogle Scholar
  23. Meigs JB, Manning AK, Fox CS, Ftorez X, Liu C, Cupples LA andDupuis J (2007) Genome-wide association with diabetes-related traits in the Framingham Heart Study. BMC Med. Genet. 8 Suppl, 1: S16.CrossRefGoogle Scholar
  24. Nickerson DA, Tobe VO andTaylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25: 2745–2751.CrossRefPubMedGoogle Scholar
  25. Rhodes CJ andWhite MF (2002) Molecular insights into insulin action and secretion. Eur. J. Clin. Invest. 32 Suppl. 3: 3–13.CrossRefPubMedGoogle Scholar
  26. Romashkova JA andMakarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86–90.CrossRefPubMedGoogle Scholar
  27. Rozen S andSkaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365–386.PubMedGoogle Scholar
  28. Salonen JT, Uimari P, Aalto JM, Pirskanen M, Kaikkonen J, Todorova B, Hypponen J, Korhonen VP, Asikainen J.Devine C, Tuomainen TP, Luedemann J, Nauck M, Kerner W, Stephens RH, New JP, Oilier WE, Gibson JM, Payton A, Horan MA, Pendleton N, Mahoney W, Meyre D, Delplanque J, Froguel P, Luzzatto O, Yakir B andDarvasi A (2007) Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am. J. Hum. Genet. 81: 338–345.CrossRefPubMedGoogle Scholar
  29. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Bostrom K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nifsson P, Orho-Melander M, Rastam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjogren M, Sterner M, Surti A, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D andPurcell S (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336.CrossRefPubMedGoogle Scholar
  30. Scott U, Mohlke KL, Bonnycastle LL, Wilier CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN.Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS andBoehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345.CrossRefPubMedGoogle Scholar
  31. Shifman S andDarvasi A (2001) The value of isolated populations. Nat. Genet. 28: 309–310.CrossRefPubMedGoogle Scholar
  32. Sfadek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner Bl, Balding DJ, Meyre D, Polychronakos C andFroguel P (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885.CrossRefGoogle Scholar
  33. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H, Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J, Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-Johnsen K, Jorgensen T, van Vliet-Ostaptchouk JV, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Rotimi C, Gumey M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR, Thorsteinsdottir U, Kong A andStefansson K (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39: 770–775.CrossRefPubMedGoogle Scholar
  34. Summers SA andBirnbaum MJ (1997) A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem. Soc. Trans. 25: 981–988.PubMedGoogle Scholar
  35. Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E andLe Marchand-Brustel Y (1997) Potential role of protein kinase B in glucose transporter 4 trans location in adipocytes. Endocrinology 138: 2005–2010.CrossRefPubMedGoogle Scholar
  36. The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3.000 shared controls. Nature 447: 661–678.CrossRefGoogle Scholar
  37. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y andKadowaki T (1998) Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J. Biol. Chem. 273: 5315–5322.CrossRefPubMedGoogle Scholar
  38. Vaag A, Henriksen JE andBeck-Nielsen H (1992) Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89: 782–788.CrossRefPubMedGoogle Scholar
  39. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett X, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS, McCarthy Ml andHattersley AT (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336–1341.CrossRefPubMedGoogle Scholar
  40. Zierath JR andWallberg-Henriksson H (2002) From receptor to effector: insulin signal transduction in skeletal muscle from type II diabetic patients. Ann. N. Y. Acad. Sci. 967: 120–134.CrossRefPubMedGoogle Scholar

Copyright information

© The Genetics Society of Korea & Springer 2009

Authors and Affiliations

  • Hyun-Seok Jin
    • 1
  • Kyung-Won Hong
    • 1
  • Ji-Eun Lim
    • 1
  • Gi-Ja Lee
    • 1
  • Jong Ho Han
    • 1
  • Min-Jin Go
    • 2
  • Jong-Young Lee
    • 2
  • Jeong-Taek Woo
    • 3
  • Hun Kuk Park
    • 1
  • Bermseok Oh
    • 1
    Email author
  1. 1.Department of Biomedical Engineering, School of MedicineKyung Hee UniversitySeoulKorea
  2. 2.Center for Genome ScienceNational Institute of HealthSeoulKorea
  3. 3.Department of Endocrinology and Metabolism, Kyung Hee University hospital, School of MedicineKyung Hee UniversitySeoulKorea

Personalised recommendations