Skip to main content
Log in

The influence of 3α,7α-dihydroxy-12-keto-5β-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim of this study was to investigate the pharmacokinetics and glucose-lowering activity of gliclazide alone and in combination with the bile acid salt, sodium 3α,7α-dihydroxy-12-keto-5β-cholanate (MKC), in a rat model of type I diabetes. Eighty male Wistar rats were divided into eight groups (n=10). Four groups were treated with alloxan (30 mg/kg) to induce diabetes. One group of healthy and one group of diabetic rats were administered gliclazide (20 mg/kg), MKC (4 mg/kg) or a combination of gliclazide (20 mg/kg) and MKC (4 mg/kg). One group of healthy and one group of diabetic rats were used as controls. Blood samples were collected from the tail vein 6 hours post-dose and the plasma was analyzed for glucose concentrations. It was found that gliclazide bioavailability was increased in healthy rats when coadministered with MKC, but there was no difference in glucose levels. Gliclazide bioavailability was much lower in diabetic rats and was not altered by MKC. However, the hypoglycemic effect of the combination of gliclazide and MKC was significantly greater in diabetic rats than that of gliclazide alone. It was demonstrated that the combination of MKC and gliclazide produced a significant hypoglycemic effect in a rat model of Type I diabetes. As gliclazide alone does not have a hypoglycemic effect on Type 1 diabetic rats, it can be concluded that gliclazide potentiates hypoglycemic effect of MKC in Type 1 diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler A.E., Janson J., Bonner-Weir S., Ritzel R, Rizza R.A., Butler P.C. (2003): Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102–110.

    Article  CAS  PubMed  Google Scholar 

  2. Rendell M. (2004): The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 64, 1339–1358.

    Article  CAS  PubMed  Google Scholar 

  3. Yaris F., Yaris E., Kadioglu M., Ulku C., Kesim M., Kalyoncu N.I. (2004): Normal pregnancy outcome following inadvertent exposure to rosiglitazone, gliclazide, and atorvastatin in a diabetic and hypertensive woman. Reprod. Toxicol., 18, 619–621.

    CAS  PubMed  Google Scholar 

  4. Garcia-Bournissen, F., Feig D.S., Koren G. (2003): Maternalfetal transport of hypoglycaemic drugs. Clin. Pharmacokinet., 42, 303–313.

    Article  CAS  PubMed  Google Scholar 

  5. Campbell D.B.. Lavielle R., Nathan C. (1991): The mode of action and clinical pharmacology of gliclazide: a review. Diabetes Res. Clin. Pract., 14 (Suppl 2), S21-S36.

    Article  PubMed  Google Scholar 

  6. Smith R.J. (1990): Effects of the sulfonylureas on muscle glucose homeostasis. Am. J. Med., 89, 38S-43S; discussion 51S–53S.

    Article  CAS  PubMed  Google Scholar 

  7. Mamputu J.C., Renier G. (2001): Gliclazide decreases vascular smooth muscle cell dysfunction induced by cell-mediated oxidized low-density lipoprotein. Metabolism, 50, 688–695.

    Article  CAS  PubMed  Google Scholar 

  8. Renier G., Desfaits A.C., Serri O. (2000): Effect of gliclazide on monocyte endothelium interactions in diabetes. J. Diabetes Complica., 14, 215–223.

    Article  CAS  Google Scholar 

  9. Palmer K.J., Brogden R.N. (1993): Gliclazide. An update of its pharmacological properties and therapeutic efficacy in non-insulin-dependent diabetes mellitus. Drugs, 46, 92–125.

    Article  CAS  PubMed  Google Scholar 

  10. Tsiani E., Ramlal T., Leiter L.T., Klip A., Fantus I. (1995): Stimulation of glucose uptake and increased plasma membrane content of glucose transport in L6 skeletal muscle cells by the sulfonylureas gliclazide and glyburide. Endocrinology, 136, 2505–2512.

    Article  CAS  PubMed  Google Scholar 

  11. Merlob P., Levitt O., Stahl B (2002): Oral antihyperglycemic agents during pregnancy and lactation: a review. Paediatr. Drugs, 4: 755–760.

    PubMed  Google Scholar 

  12. Rieutord A., Stupans I., Shenfield G.M., Gross A.S. (1995): Gliclazide hydroxylation by rat liver microsomes. Xenobiotica, 25: 1345–1354.

    Article  CAS  PubMed  Google Scholar 

  13. Mesiha M.S., Ponnapula S., Plakogiannis F. (2002): Oral absorption of insulin encapsulated in artificial chyles of bile salts, palmitic acid and alpha-tocopherol dispersions. Int. J. Pharm., 249, 1–5.

    Article  CAS  PubMed  Google Scholar 

  14. Mrestani Y., Marestani Z., Neubert R.H. (2001): The effect of a functional group in penicillin derivatives on the interaction with bile salt micelles studied by micellar electrokinetic chromatography. Electrophoresis, 22, 3573–3577.

    Article  CAS  PubMed  Google Scholar 

  15. Mikov M., Kevresan S., Kuhajda K., Jakovljevic V., Vasovic V. (2004): 3-alpha,7-alpha-dihydroxy-12-oxo-5-beta-cholanate as blood — brain barrier permeator. Pol. J. Pharmacol., 56, 367–371.

    CAS  PubMed  Google Scholar 

  16. Kuhajda K., Kevresan S., Kandrac J, Fawcett J.P., Mikov M. (2006): Chemical and metabolic transformations of selected bile acids. Eur. J. Drug Metab. Pharmacokinet., 31, 179–235.

    Article  CAS  PubMed  Google Scholar 

  17. Kuhajda K., Kevresan S., Mikov M., Sabo A., Miljkovic D. (2000): Influence of 3α,7α-dihydroxy-12-oxo-5β cholanate on blood glucose levels in rats. Arch. Toxicol. Kinet. Xenobiot. Metab., 8, 304–308.

    Google Scholar 

  18. Mikov M., Fawcett J. P., Kuhajda K., Kevresan S. (2006): Pharmacology of bile acids and their derivatives: absorption promoters and therapeutic agents. Eur. J. Drug Metabol. Pharmacokinet., 31, 237–251.

    Article  CAS  Google Scholar 

  19. Khavinson V.K. (2005): Effect of tetrapeptide on insulin biosynthesis in rats with alloxan-induced diabetes. Bull. Exp. Biol. Med., 140, 452–454.

    Article  CAS  PubMed  Google Scholar 

  20. Moursagaleeva G.N.; Khafizianova R.K., Kiyasov A.P. (1988): The elevating blood glucose levels as result of increasing of A-cell population in alloxan-induced diabetes in rats. Pathophysiology, 5 (Suppl. I). 177.

    Google Scholar 

  21. Federiuk I.F., Casey H.M., Quinn M.J., Wood M.D., Ward W. K. (2004): Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp. Med., 54, 252–257.

    CAS  PubMed  Google Scholar 

  22. Slonim A.E., Surber M.L., Page D.L., Sharp R.A., Burr I.M. (1983): Modification of chemically induced diabetes in rats by vitamin E. Supplementation minimizes and depletion enhances development of diabetes. J. Clin. Invest., 71, 1282–1288.

    Article  CAS  PubMed  Google Scholar 

  23. Miljkovic D, Kuhajda K., Hranisavljevic J. (1996): Selective C-12 oxidation of cholic acid. J. Chem. Res. 1996; Suppl: 106–107

    Google Scholar 

  24. Bachmann K, Pardoe D., White D.: Scaling basic toxicokinetic parameters from rat to man. Environ. Health Perspect., 104, 400–407.

  25. Alam M.J., Rahman M.A. (1971): Changes in the saccharoid fraction in rats with alloxan-induced diabetes or injected with epinephrine. Clin. Chem., 17, 915–920.

    CAS  PubMed  Google Scholar 

  26. Khavinson, V.K. (2005): Effect of tetrapeptide on insulin biosynthesis in rats with alloxan-induced diabetes. Bull. Exp. Biol. Med., 140, 452–454.

    Article  CAS  PubMed  Google Scholar 

  27. Park J.Y., Kim K.A., Park P.W., Park C.W., Shin J.G. (2003): Effect of rifampin on the pharmacokinetics and pharmacodynamics of gliclazide. Clin. Pharmacol. Ther., 74, 334–340.

    Article  CAS  PubMed  Google Scholar 

  28. Rouini M.R., Mohajer A., Tahami M.H. (2003): A simple and sensitive HPLC method for determination of gliclazide in human serum. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 785, 383–386.

    Article  CAS  PubMed  Google Scholar 

  29. Hsieh D. (ed) (1994). Drug Permeation Enhancement Theory and Applications. Marcel Dekker Inc. New York.

    Google Scholar 

  30. Alberts B., Bary D., Lewis J., Raff M., Roberts K., Watson J., eds (1983): Molecular Biology of the Cell. Garland, N.Y.

  31. Gribble F.M., Ashcroft F.M. (2000): Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues. Metabolism, 49, 3–6.

    Article  CAS  PubMed  Google Scholar 

  32. Eloranta J.J., Kullak-Ublick G.A. (2005): Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch. Biochem. Biophys., 433, 397–412.

    Article  CAS  PubMed  Google Scholar 

  33. Zollner G., Fickert P., Silbert D., Fuchsbichler A., Stumptner C., Zatloukal K., Denk H., Trauner M. (2002): Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. Am. J. Physiol. Gastrointest. Liver Physiol., 282, G184-G191.

    CAS  PubMed  Google Scholar 

  34. Iida M., Ikeda M., Kishimoto M., Tsujino T., Kaneto H., Matsuhisa M, et al. (2002): Evaluation of gut motility in type II diabetes by the radiopaque marker methodl. J. Gastroenerol. Hepatol., 15, 381–385.

    Article  Google Scholar 

  35. Mikov M., Boni N.S., Al-Salami H., Kuhajda K, Kevresan S., Fawcett J. P. (2007): Bioavailability and hypoglycemic effect of the semisynthetic bile acid salt, sodium 3α,7α-dihydroxy-12-oxo-5β-cholanate (MKH), in healthy and diabetic rats. Eur. J. Drug Metabol. Pharmacokinet., 32, 7–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momir Mikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikov, M., Al-Salami, H., Golocorbin-Kon, S. et al. The influence of 3α,7α-dihydroxy-12-keto-5β-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes. Eur. J. Drug Metabol. Pharmacokinet. 33, 137–142 (2008). https://doi.org/10.1007/BF03191110

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191110

Key words

Navigation