Skip to main content
Log in

Effect of ciprofloxacin and ibuprofen on thein vitro Metabolism of rosiglitazone and oral pharmacokinetics of rosiglitazone in healthy human volunteers

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim of this study was to study the effect of ciprofloxacin (CFX) and ibuprofen (IBF) on thein vitro metabolism of rosiglitazone (RGZ) in human liver microsomes and on the pharmacokinetics of RGZ in healthy human volunteers. A randomized, placebo controlled, 3-way crossover design oral pharmacokinetic study was done in healthy human male volunteers andin vitro metabolism studies were done in human liver microsomes to study the effect of CFX and IBF on RGZ metabolism. Each subject received orally either 8 mg of RGZ with a placebo or co-administration with either 500 mg of CFX or 400 mg of IBF. Plasma concentrations of RGZ were estimated using a validated LC-MS/MS method and the metabolism studies samples were analyzed by a reported HPLC method. There was no statistically significant difference observed in the pharmacokinetic parameters viz., AUC(0−t), AUC(0−∞), Cmax, Tmax, Kel and t1/2 of RGZ following co-administration of either CFX or IBF. Both CFX and IBF did not affect thein vitro metabolism of RGZ in human liver microsomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patel J., Miller E., Patwardhan R., Rosiglitazone 011 Study Group (1998). Rosiglitazone (BRL49653) monotherapy has significant glucose lowering effect in type 2 diabetic patients. Diabetes, 47(Suppl 1), 17.

    Google Scholar 

  2. Matthews D.R., Bakst A., Weston W.M., Henyari P. (1999). Rosiglitazone decreases insulin resistance and improves beta-cell function in patients with type 2 diabetes. Diabetolgia, 42 (Suppl 1), A228.

    Google Scholar 

  3. Lehmann J.M., Moore L.B., Smith-Oliver T.A., Wilkison W.O., Wilsone T.M., Kliewer S.A. (1995). An antidiabetic thiazolidinediones is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem., 270 12953–12956.

    Article  CAS  PubMed  Google Scholar 

  4. Berger K., Bailey P., Biswas C., Cullinan C.A., Doebber T.W., Hayes N.S., Saperstein R., Smith R.G., Leibowitz M.D. (1996). Thiazolidinediones produce a conformational change in peroxisome proliferator-activated receptor-γ: Binding and activation correlate with antidiabetic actions indb/db mice. Endocrinology, 137, 4189–4195.

    Article  CAS  PubMed  Google Scholar 

  5. Willson T.M., Cobb J.E., Cowan D.J., Wiethe R.W., Correa I.D., Prakash S.R., Beck K.D., Moore L.B., Kliewer S.A., Lehmann J.M. (1996). Structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem., 39, 665–668.

    Article  CAS  PubMed  Google Scholar 

  6. Young P.W., Buckle D.R., Cantello B.C., Chapman H., Clapham J.C., Coyle P.J., Haigh D., Hindley R.M., Holder J.C., Kallender H., Latter A.J., Lawrie K.W., Mossakowska D., Murphy G.J., Cox R.L., Smith S.A. (1998): Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BR-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferatoractivated receptor gamma. J. Pharmacol. Exp. Ther., 284, 751–759.

    CAS  PubMed  Google Scholar 

  7. Bolton G.C., Keogh J.P., East P.D., Hollis F.J., Shore A.D. (1996). The fate of a thiazolidinediones antidiabetic in rat and dog. Xenobiotica, 26, 627–636.

    Article  CAS  PubMed  Google Scholar 

  8. Cox P.J., Ryan D.A., Hollis F.J., Harris A.M., Miller A.K., Vousden M., Cowley H. (2000). Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in humans. Drug Metab. Dispos., 28, 772–780.

    CAS  PubMed  Google Scholar 

  9. Snaith A., Pugh L., Simpson C.R., McLay J.S. (2008). The potential for interaction between warfarin and coprescribed medication: a retrospective study in primary care. Am. J. Cardiovasc. Drugs, 8, 207–212.

    Article  CAS  PubMed  Google Scholar 

  10. Pankuch G.A., Lin G., Seifert H., Appelbaum P.C. (2008). Activity of meropenem with and without ciprofloxacin and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob. Agents Chemother., 52, 333–336.

    Article  CAS  PubMed  Google Scholar 

  11. Issa M.M., Nejem R.M., El-Abadla N.S., El-Naby M.K., Roshdy A.A., Kheiralla Z.A. (2007). Effects of paracetamol on the pharmacokinetics of ciprofloxacin in plasma using a microbiological assay. Clin. Drug Investig., 27, 463–467.

    Article  CAS  PubMed  Google Scholar 

  12. Dorani H., Schutzer K.M., Sarich T.C., Wall U., Logren U., Ohlsson L., Erikson U.G. (2007). Pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor ximelagartan co-administration with different classes of antibiotics in healthy volunteers. Eur. J. Clin. Pharmacol., 63, 571–581.

    Article  CAS  PubMed  Google Scholar 

  13. Marcelín-Jiménez G., Angeles A.P., Martínez-Rossier L., Fernández S.A. (2006). Ciprofloxacin bioavailability is enhanced by oral administration with phenazopyridine: a pharmacokinetic study in Mexican population. Clin. Drug Investig., 27, 463–467.

    Google Scholar 

  14. Ilo C.E., Ilondu N.A., Okwoli N., Brown S.A., Elo-Ilo J.C., Agbasi P.U., Orisakwe O.E. (2006). Effect of chloroquine on the bioavailability of ciprofloxacin in humans. Am. J. Ther., 13, 432–435.

    Article  CAS  PubMed  Google Scholar 

  15. Hedaya M.A., El-Afify D.R., El-Maghraby G.M. (2006). The effect of cipro-floxacin and clarithomycin on sildenafil oral bioavailability in human volunteers. Biophram. Drug Dispos., 27, 103–110.

    Article  CAS  Google Scholar 

  16. Jokinen M.J., Olkkola K.T., Ahonen J., Neuvonen P.J. (2003). Effect of ciprofloxacin on the pharmacokinetics of ropivacaine. Eur. J. Clin. Pharmacol., 58, 653–657.

    CAS  PubMed  Google Scholar 

  17. Dalle J.H., Auvrignon A., Vassal G., Leverger G. (2002). Interaction between methotrexate and ciprofloxacin. J. Pediatr. Hematol. Oncol., 24, 321–322.

    Article  PubMed  Google Scholar 

  18. Orisakwe O.E., Agbasi P.U., Afonne O.J., Ofoefule S.I., Obi E., Orish C.N. (2001). Rifampicin pharmacokinetics with and without ciprofloxacin. Am. J. Ther., 8, 151–153.

    Article  CAS  PubMed  Google Scholar 

  19. Raaska K., Neuvonen P.J. (2000). Ciprofloxacin increases serum clozapine and N-desmethyl-clozapine: a study in patients with Schizophrenia. Eur. J. Clin. Pharmacol., 56, 585–589.

    Article  CAS  PubMed  Google Scholar 

  20. Pollak P.T., Slayter K.L. (1997). Hazards of doubling phenytoin dose in the face of an unrecognized interaction with ciprofloxacin. Ann. Pharmacother., 31, 61–64.

    CAS  PubMed  Google Scholar 

  21. Gladding P.A., Webster M.W., Farrell H.B., Zeng I.S., Park R., Ruijne N. (2008). The antiplatelet effect of six non-steroidal anti-inflammatory drugs and their pharmacodynamic interaction with aspirin in healthy volunteers. Am. J. Cardiol., 101, 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  22. Sohn S., Kwon K. (2008). Accelerated thrombotic occlusion of a medium-sized coronary aneurysm in Kawasaki disease by the inhibitory effect of ibuprofen on aspirin. Pediatr. Cardiol., 29, 153–156.

    Article  PubMed  Google Scholar 

  23. Tornio A., Niemi M., Neuvonen P.J., Backman J.T. (2007). Stereoselective interaction between the CYP2C8 inhibitor gemfibrozil and racemic ibuprofen. Eur. J. Clin. Pharmacol., 63, 463–469.

    Article  CAS  PubMed  Google Scholar 

  24. Byrne S.T., Denkin S.M., Zhang Y. (2007). Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis. J. Antimicrob. Chemother., 59, 313–316.

    Article  CAS  PubMed  Google Scholar 

  25. Hynninen V.V., Olkkola K.T., Leino K., Lundgren S., Neuvonen P.J., Rane A., Valtonen M., Vyyryläinen H., Laine K. (2006). Effects of the antifungals voriconazole and fluconazole on the pharmacokinetics of S-(+)- and R-(−)-Ibuprofen. Antimicrob. Agents Chemother., 50, 1967–1972.

    Article  CAS  PubMed  Google Scholar 

  26. Zelcer S., Kolesnikov Y., Kovalyshyn I., Pasternak D.A., Pasternak G.W. (2005). Selective potentiation of opioid analgesia by nonsteroidal anti-inflammatory drugs. Brain Res., 1040, 151–156.

    Article  CAS  PubMed  Google Scholar 

  27. Savenkov M.P., Ivanov S.N., Brodskaia S.A. (2001). Antihypertensive effect of enalapril and lisinopril administered in combination with nonsteroid anti-inflammatory agents. Ter. Arkh., 73, 27–31.

    CAS  PubMed  Google Scholar 

  28. Kubacka R.T., Antal E.J., Juhl R.P., Welshman I.R. (1996). Effects of aspirin and ibuprofen on the pharmacokinetics and pharmacodynamics of glyburide in healthy subjects. Ann. Pharmacother., 30, 20–26.

    CAS  PubMed  Google Scholar 

  29. Rao M.N., Biju B., Ansar A.K., Mujeeb S., Ramesh M., Srinivas N.R. (2003). Open access generic method for continuous determination of major human CYP 450 substrates/metabolites and its application in drug metabolism studies. Xenobiotica, 33, 1233–1245.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh Kumar, J.N., Devi, P., Narasu, L. et al. Effect of ciprofloxacin and ibuprofen on thein vitro Metabolism of rosiglitazone and oral pharmacokinetics of rosiglitazone in healthy human volunteers. Eur. J. Drug Metabol. Pharmacokinet. 33, 237–242 (2008). https://doi.org/10.1007/BF03190878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190878

Key words

Navigation