Skip to main content
Log in

Quinine distribution in mice withplasmodium berghei malaria

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The disposition of a single 80 mg/kg injection of quinine base was compared in control andPlasmodium berghei-infected mice. Pharmacokinetic parameters were determined on repeated whole blood samples from caudal vein (experiment 1) and quinine distribution was evaluated in tissues and blood fractions from mice sacrificed two hours post dosing (experiment 2). Quinine concentrations were assessed by high performance liquid chromatography with fluorometric detection. Whole blood concentrations and AUC0−∞ of quinine increased in a parasitaemia-dependent manner. Quinine blood clearance and peak blood concentrations of metabolites negatively correlated with the parasitaemia. The apparent distribution volume of quinine only decreased in severely ill mice.

Quinine concentrations rise in a parasitaemia-dependent manner in homogenates of spleen, lungs and kidney and in erythrocyte pellets. The negative relationship, observed between the parasitaemia and the tissue-to-whole blood ratio for muscle, heart, liver and brain, contributes to the reduction of the blood distribution volume. Quinine uptake by muscle and heart was dependent on the free fraction of plasma quinine. The liver and brain concentrations of quinine were similar in control and infected mice. The tissue-to-plasma free fraction ratios decrease when the parasitaemia rises suggesting a restrictive uptake of quinine by these tissues. In conclusion.P. berghei malaria decreases both total clearance and apparent volume of distribution with a heterogeneous redistribution of quinine between the tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White N.J., Chanthavanich P., Krishna S., Bunch C. and Silamut K. (1983): Quinine disposition kinetics. Br. J. Clin. Pharmacol., 16, 399–403.

    CAS  PubMed  Google Scholar 

  2. White N.J., Looareesuwan S., Warrell D.A., Warrell M.J., Bunnag D. and Harinasuta T. (1982): Quinine pharmacokinetics and toxicity in cerebral and uncomplicatedfalciparum malaria. Am. J. Med., 73, 564–572.

    Article  CAS  PubMed  Google Scholar 

  3. Pussard E., Barennes H., Daouda H., Clavier F., Mahaman Sani A., Osse M., Granic G. and Verdier F. (1999): Quinine disposition in globally malnourished children with cerebral malaria. Clin. Pharmacol. Ther., 65, 500–510.

    Article  CAS  PubMed  Google Scholar 

  4. Krishna S. and White N.J. (1996): Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin. Pharmacokinet., 30, 263–299.

    Article  CAS  PubMed  Google Scholar 

  5. Emudianughe T.S., Bickle Q.D., Taylor M.G. and Andrews B. (1985): Effect ofplasmodium berghei infection on benzoic acid metabolism in mice. Experientia, 41, 1407–1409.

    Article  CAS  PubMed  Google Scholar 

  6. Mansor S.M., Edwards G., Roberts P.J. and Ward S.A. (1991): The effect of malaria infection on paracetamol disposition in the rat. Biochem. Pharmacol., 41, 1701–1711.

    Article  Google Scholar 

  7. Mansor S.M., Ward S.A. and Edwards G. (1991): The effect of malaria infection on antipyrine metabolite formation in the rat. Biochem. Pharmacol., 41, 1264–1266.

    Article  CAS  PubMed  Google Scholar 

  8. Wilairatana P., Looareesuwan S., Vanijanonta S., Charoenlarp P. and Wittayalertpanya S. (1994): Hepatic metabolism in severefalciparum malaria: caffeine clearance study. Ann. Trop. Med. Parasitol., 88, 13–19.

    CAS  PubMed  Google Scholar 

  9. Mansor S.M., Ward S.A., Edwards G., Hoaksey P.E. and Breckenridge A.M. (1990): The effect of malaria infection on the disposition of quinine and quinidine in the rat isolated perfused liver preparation. J. Pharm. Pharmacol., 42, 428–432.

    CAS  PubMed  Google Scholar 

  10. Song G.H., Andre R.G., Scheibel L.W., Wirtz R.A., Cheriathundam E. and Alvares A.P. (1995):Plasmodium berghei: sensitivity of chloroquine-resistant and chloroquine-sensitive strains to irradiation and the effect of irradiated parasites on cytochrome P450-dependent monooxygenases. Res. Com. Mol. Path. Pharmacol., 90, 75–85.

    CAS  Google Scholar 

  11. Saxena N., Saxena A., Dutta G.P., Gatak S. and Pandey V.C. (1987): Effect ofPlasmodium yoleii nigeriensis infection and chloroquine on the hepatic mixed function oxidase system of mice. Mol. Biochem. Parasitol., 24, 283–287.

    Article  CAS  PubMed  Google Scholar 

  12. Pukrittayakamee S., Looareesuwan S., Keeratithakul D., Davis T.M.E., Teja-Isavadharm P., Nagachinta B., Weber A., Smith A.L., Kyle D. and White N.J. (1997): A study of the factors affecting the metabolic clearance of quinine in malaria. Eur. J. Clin. Pharmacol., 52, 487–493.

    Article  CAS  PubMed  Google Scholar 

  13. Silamut K., White N.J., Looareesuwan S. and Warrell D.A. (1985): Binding of quinine to plasma proteins infalciparum malaria. Am. J. Trop. Med. Hyg., 34, 681–686.

    CAS  PubMed  Google Scholar 

  14. Peters W. (1987): Chemotherapy and drug resistance in malaria. 2nd Edition. Academic Press. London.

    Google Scholar 

  15. Thumwood C.M., Hunt N.H., Clark I.A. and Cowden W.B. (1988): Break down of the blood-brain barrier in murine cerebral malaria. Parasitology 96, 579–589.

    Article  PubMed  Google Scholar 

  16. Brown H., Hien T.T., Day N., Mai N.T., Chuong L.V., Chau T.T., Loc P.P., Phu N.H., Bethell D., Farrar J., Gatter K., White N.J. and Turner G. (1999): Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol. Appl. Neurobiol., 25, 331–340.

    Article  CAS  PubMed  Google Scholar 

  17. Brown H.C., Chau T.T.C., Mai N.T.H., Day N.P.J., Sinh D.X., White N.J., Hien T.T., Farrar J. and Turner G.D.H. (2000): Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology, 55, 104–111.

    CAS  PubMed  Google Scholar 

  18. Vuong P.N., Richard F., Snounou G., Coquelin F., Rénia L., Gonnet F., Chabaud A.G. and Landau I. (1999): Development of irreversible lesions in the brain, heart and kidney following acute and chronic murine malaria infection. Parasitology, 119, 546–553.

    Article  Google Scholar 

  19. Zhao H.J. and Ishizaki T. (1997): Thein vitro hepatic metabolism of quinine in mice, rats and dogs: comparison with human liver microsomes. J. Pharmacol. Exp. Ther., 283, 1168–1176.

    CAS  PubMed  Google Scholar 

  20. Iliadis A., Brown C. and Huggins M.L. (1992): Apis: a software for model identification, simulation and dosage regimens calculation in clinical and experimental pharmacokinetics. Comp. Methods Programs Biomed. 38, 227–239.

    Article  CAS  Google Scholar 

  21. Zhang H., Coville P.F., Walker R.J., Miners J.O., Birkett D.J. and Wanwimolruk S. (1997): Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine. Br. J. Clin. Pharmacol., 43, 245–252.

    Article  CAS  PubMed  Google Scholar 

  22. Liddle C., Graham G.G., Christopher R.K., Bhuwapathanapun S. and Duffield A.M. (1981). Identification of new urinary metabolites in man of quinine using methane chemical ionization gas chromatography-mass spectrometry. Xenobiotica, 11, 81–87.

    Article  CAS  PubMed  Google Scholar 

  23. Wanwimolruk S., Wong S.M., Zhang H. and Coville P.F. (1996): Simultaneous determination of quinine and a major metabolite 3-hydroxy quinine in biological fluids by HPLC without extraction. J. Liq. Chromatogr., 19, 293–305.

    Article  CAS  Google Scholar 

  24. Bannon P., Yu P., Cook J.M., Roy L. and Villeneuve J.P. (1998): Identification of quinine metabolites in urine after oral dosing in humans. J. Chromatogr., 715, 387–393.

    Article  CAS  Google Scholar 

  25. Muller-Eberhard U., Eiseman J.L., Foielart M. and Alvares A.P. (1983): Effect of heme on allylisopropyl acetamide induced changes in heme and drug metabolism in the rhesus monkey (Macaca mulatta). Biochem. Pharmacol., 32, 3763–3769.

    Google Scholar 

  26. Bertini R., Bianchi M., Villa P. and Ghezzi P. (1988): Depression of liver drug metabolism and increase in plasma fibrinogen by interleukin 1 and tumor necrosis factor: a comparison with lymphotoxin and interferon. Int. J. Immunopharmacol., 10, 525–530.

    Article  CAS  PubMed  Google Scholar 

  27. Monshouwer M., McLellan R.A., Delaporte E., Witkamp R.F., van Miert A. and Renton K.W. (1996): Differential effect of pentoxifylline on lipopolysaccharide-induced downregulation of cytochrome P450. Biochem. Pharmacol., 52, 1195–1200.

    Article  CAS  PubMed  Google Scholar 

  28. Pukrittayakamee S., White N.J., Davis T.M., Looareesuwan S., Supanaranond W., Desakorn V., Chaivisuth B. and Williamson D.H. (1992): Hepatic blood flow and metabolism in severefalciparum malaria: clearance of intravenously administered galactose. Clin. Sci., 82, 63–70.

    CAS  PubMed  Google Scholar 

  29. Mansor S.M., Molyneux M.E., Taylor T.E., Ward S.A., Wirima J.J. and Edwards G. (1991): Effect ofPlasmodium falciparum malaria infection on the plasma concentration of α1-acid glycoprotein and the binding of quinine in Malawian children. Br. J. Clin. Pharmacol., 32, 317–321.

    CAS  PubMed  Google Scholar 

  30. Mansor S.M., Ward S.A., Edwards G., Hoakey P.E. and Breckenridge A.M. (1991): The influence of α1-acid Glycoprotein on quinine disposition in the rat isolated perfused liver preparation J. Pharm. Pharmacol., 43, 650–654.

    CAS  PubMed  Google Scholar 

  31. Rimchala P., Karbwang J., Sukontason K., Banmairuroi V., Molunto P. and Na-Bangchang K. (1996): Pharmacokinetics of quinine in patients with chronic renal failure. Eur. J. Clin. Pharmacol., 49, 497–501.

    Article  CAS  PubMed  Google Scholar 

  32. Ceithami J. and Evans E.A. (1946): The biochemistry of the malaria parasite. VII.In vitro studies of the distribution of quinine between blood cells and their suspending medium. Arch. Biochem. Biophys., 10, 397–416.

    Google Scholar 

  33. Salako L.A. and Ajayi F.O. (1987): Distribution and urinary excretion of the desethylmetabolites of chloroquine in the rat. J. Pharm. Pharmacol., 39, 859–860.

    CAS  PubMed  Google Scholar 

  34. Mackey L.J., Hochmann A., June C.H., Contreras C.E. and Lambert P.H. (1980): Immunopathological aspects ofPlasmodium berghei infection in five strains of mice. II. Immunopathology of cerebral and other tissues lesions during the infection. Clin. Exp. immunol., 42, 412–420.

    CAS  PubMed  Google Scholar 

  35. Karbwang J., Davis T.M., Looareesuwan S., Molunto P., Bunnag D. and White N.J. (1993): A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. Br. J. Clin. Pharmacol., 35, 265–71.

    CAS  PubMed  Google Scholar 

  36. Rodriguez-Acosta A., Finol H.J., Pulido-Mendez M., Marquez A., Andrade A., Gonzalez N., Aguilar I., Giron M.E. and Pinto A. (1998): Liver ultrastructural pathology in mice infected withPlasmodium berghei. J. Submicrosc. Cytol. Pathol., 30, 299–307.

    CAS  Google Scholar 

  37. Neill A.L. and Hunt N.H. (1992): Pathology of fatal and resolvingPlasmodium berghei cerebral malaria in mice. Parasitology, 105, 165–175.

    Article  PubMed  Google Scholar 

  38. Kusuhara H., Suzuki H., Terasaki T., Kakee A., Lemaire M. and Sugiyama Y. (1997): P-Glycoprotein mediates the efflux of quinidine across the blood-brain barrier. J. Pharmacol. Exp. Ther., 283, 574–580.

    CAS  PubMed  Google Scholar 

  39. Fromm M.F. (2000): P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Ther., 38, 69–74.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pussard, E., Bernier, A., Fouquet, E. et al. Quinine distribution in mice withplasmodium berghei malaria. Eur. J. Drug Metab. Pharmacokinet. 28, 11–20 (2003). https://doi.org/10.1007/BF03190862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190862

Keywords

Navigation