Skip to main content
Log in

Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Both aldehyde oxidase and xanthine oxidase catalyze the oxidation of a wide range of N-heterocycles and aldehydes. These enzymes are important in the oxidation of N-heterocyclic xenobiotics, whereas their role in the oxidation of xenobiotic aldehydes is usually ignored. p ]The present investigation describes the interaction of methyl- and nitrosubstituted benzaldehydes, in theortho-,meta- andpara-positions, with guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase.

The kinetic constants showed that most substituted benzaldehydes are excellent substrates of aldehyde oxidase with lower affinities for xanthine oxidase. Low Km values for aldehyde oxidase were observed with most benzaldehydes tested, with 3-nitrobenzaldehyde having the lowest Km value and 3-methylbenzaldehyde being the best substrate in terms of substrate efficiency (Ks). Additionally, low Km values for xanthine oxidase were found with most benzaldehydes tested. However, all benzaldehydes also had low Vmax values, which made them poor substrates of xanthine oxidase.

It is therefore possible that aldehyde oxidase may be critical in the oxidation of xenobiotic and endobiotic derived aldehydes and its role in such reactions should not be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feron V.J., Til H.P., de Vrijer F., Woutersen R.A., Cassée F.R., van Bladeren P.J. (1991): Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat. Res. 259, 363–385.

    Article  CAS  PubMed  Google Scholar 

  2. Lindahl R. (1992): Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 27, 283–335.

    Article  CAS  PubMed  Google Scholar 

  3. Nursten H.E., Williams A.A. (1967): Fruit aromas: a survey of components identified. Chem. Ind. 12, 486–497.

    CAS  PubMed  Google Scholar 

  4. Ma T.H., Harris M.M. (1988): Review of the genotoxicity of formaldehyde. Mutat. Res., 196, 37–59.

    CAS  PubMed  Google Scholar 

  5. Dellarco V.L. (1988): A mutagenicity assessment of acetaldehyde. Mutat. Res. 195, 1–20.

    CAS  PubMed  Google Scholar 

  6. Goodall McC, Alton H. (1968): Metabolism of 3-hydroxytyramine (dopamine) in human subjects. Biochem. Pharmacol. 17, 905–914.

    Article  CAS  PubMed  Google Scholar 

  7. Bond P.A. (1967): Metabolism of propranolol (‘Inderal’), a potent, specific beta-adrenergic receptor blocking agent. Nature 213, 721.

    Article  CAS  PubMed  Google Scholar 

  8. Washio K., Makaya O., Sasaki H., Nishida K., Nakamura J., Shibasaki J. (1993): A new aspect of tolbutamide metabolism in the rabbit: the role of l-butyl-3-(p-formylphenyl) sulphonylurea. J. Pharm. Pharmacol. 45, 231–233.

    CAS  PubMed  Google Scholar 

  9. Panoutsopoulos G.I. (2005): Metabolism of homovanillamine to homovanillic acid in guinea pig liver slices. Cell. Physiol. Biochem. 15, 225–232.

    Article  CAS  PubMed  Google Scholar 

  10. Panoutsopoulos G.I., Kouretas D., Gounaris E.G., Beedham C. (20O4): Enzymatic oxidation of 2-phenylethylamine to phenylacetic acid and 2-phenylethanol with special reference to the metabolism of its intermediate phenylacetaldehyde. Basic Clin. Pharmacol. Toxicol. 95, 273–279.

    Article  Google Scholar 

  11. Beedham C, Critchley D.J., Ranee D.J. (1995): Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon. Arch. Biochem. Biophys. 319, 481–490.

    Article  CAS  PubMed  Google Scholar 

  12. Panoutsopoulos G.I., Beedham C. (2004): Enzymatic oxidation of phthalazine with guinea pig liver aldehyde oxidase and liver slices: inhibition by isovanillin. Acta Biochim. Pol. 51, 943–951.

    CAS  PubMed  Google Scholar 

  13. Beedham C. (1987): Molybdenum hydroxylases: Biological distribution and substrate-inhibitor specificity. In: Ellis G.P., West G.B. (eds). Progress in Medicinal Chemistry. Elsevier, Amsterdam, Vol. 24, pp. 85–127.

    Google Scholar 

  14. Panoutsopoulos G.I., Beedham C. (2004) Kinetics and specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase towards substituted benzaldehydes. Acta Biochim. Pol. 51, 649–663.

    CAS  PubMed  Google Scholar 

  15. Krenitsky T.A., Neil S.M., Elion G.B., Hitchings G.H. (1972): A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch. Biochem. Biophys. 150, 585–599.

    Article  CAS  PubMed  Google Scholar 

  16. Panoutsopoulos G.I., Kouretas D., Beedham C. (2004): Contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase on the oxidation of aromatic aldehydes. Chem. Res. Toxicol. 17, 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  17. Morpeth F.F. (1983): Studies on the specificity toward aldehyde substrates and steady-state kinetics of xanthine oxidase. Biochim. Biophys. Acta 744, 328–334.

    CAS  PubMed  Google Scholar 

  18. Sasaki K., Hosoya R., Wang Y.M., Raulston G.L. (1983): Formation and disposition of 7-hydroxymefhotrexate in rabbits. Biochem. Pharmacol. 32, 503–507.

    Article  CAS  PubMed  Google Scholar 

  19. Beedham C, Bruce S.E., Ranee D.J. (1987): Tissue distribution of the molubdenum hydroxylases, aldehyde oxidase and xanthine oxidase, in male and female guinea pigs. Eur. J. Drug Metab. Pharmacokinet. 12, 303–306.

    Article  CAS  PubMed  Google Scholar 

  20. Bruder G., Heid H., Jarasch E.D., Keenan T.W., Mather I.H. (1982): Characteristics of membrane-bound and soluble forms of xanthine oxidase from milk and endothelial cells of capillaries. Biochim. Biophys. Acta 701, 357–369.

    CAS  PubMed  Google Scholar 

  21. Beedham C, Bruce S.E., Critchley D.J., Al-Tayib Y., Ranee D.J. (1987): Species variation in hepatic aldehyde oxidase activity. Eur. J. Drug Metab. Pharmacokinet. 12, 307–310.

    Article  CAS  PubMed  Google Scholar 

  22. Krenitsky T.A., Spector T., Hall W.W. (1986): Xanthine oxidase from human liver: purification and characterization. Arch. Biochem. Biophys. 247, 108–119.

    Article  CAS  PubMed  Google Scholar 

  23. Greek Presidential Decree No 160/1991 Protection of animals used for experimental and other scientific purposes in accordance with EU Directive 86/609/EEC of the Council. Governmental Gazette No 64.

  24. Bradford M.M. (1976): A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  25. Beedham C, Bruce S.E., Critchley D.J., Ranee D.J. (1990): 1-Substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases. Biochem. Pharmacol. 39, 1213–1221.

    Article  CAS  PubMed  Google Scholar 

  26. Critchley D.J., Ranee D.J., Beedham C. (1992): Subcellular localisation of guinea pig hepatic molybdenum hydroxylases. Biochem. Biophys. Res. Commun. 185, 54–59.

    Article  CAS  PubMed  Google Scholar 

  27. Rajagopalan K.V., Handler P. (1964): Hepatic aldehyde oxidase: the substrate-binding site. J. Biol. Chem. 239, 2027–2035.

    CAS  PubMed  Google Scholar 

  28. Wilkof CA., Korus R.A., Crawford D.L., Pometto III A.L. (1984): Enzymic oxidation of aromatic aldehydes. Biotechnol. Bioeng. Symp. (Symp.Biotechnol.-Fuels Chem. 6th), 14, 419–423.

    Google Scholar 

  29. Coughlan M.P. (1980) In: Coughlan M.P. (ed). Molybdenum and molybdenum-containing enzymes. Pergamon Press, Oxford.

    Google Scholar 

  30. Taylor S.M., Stubley-Beedham C, Stell J.G.P. ( 1984): Simultaneous formation of 2- and4-quinolones from quinolinium cations catalysed by aldehyde oxidase. Biochem. J. 220,67–74.

    CAS  PubMed  Google Scholar 

  31. Spector T., Hall W.W., Krenitsky T.A. (1986): Human and bovine xanthine oxidases: inhibition studies with oxipurinol. Biochem. Pharmacol. 35, 3109–3114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veskoukis, A.S., Kouretas, D. & Panoutsopoulos, G.I. Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes. European Journal of Drug Metabolism and Pharmacokinetics 31, 11–16 (2006). https://doi.org/10.1007/BF03190636

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190636

Keywords

Navigation