Skip to main content
Log in

Identification of enzymes involved in Phase I metabolism of ciclesonide by human liver microsomes

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Ciclesonide, a novel inhaled corticosteroid, is currently being developed for the treatment of asthma. Here, the enzymes catalysing the human hepatic metabolism of ciclesonide were investigated. When incubated with human liver microsomes (HLM), [14C]ciclesonide was first metabolised to the active metabolite Ml (des-isobutyryl-ciclesonide, des-CIC) and to at least two additional metabolites, M2 and M3. M3 comprises a ‘family’ of structurally similar metabolites that are inactive. 16-Hydroxyprednisolone was also formed in microsomal incubations of [14C]des-CIC, but at approximately one-tenth the amount of both M2 and M3. bis-p-Nitrophenylphosphate and SKF 525-A respectively inhibited des-CIC formation from [14C]ciclesonide by 82% and 49% and M2/M3 formation by 82–84% and 87–89%. Regression analysis showed significant negative correlations (r=−0.96, −0.79 and −0.71, respectively) of M2 formation with CYP3A4/5, CYP2B6 and CYP2C8 activities; M3 formation significantly correlated with CYP4A9/11 (r=0.47). Troleandomycin and diethyldithiocarbamate inhibited M2 and M3 formation by 85% and 45%, respectively. Sulphaphenazole and quinidine had no inhibitory effects. CYP3A4 Supersomes® catalysed notable formation of both M2 and M3 from [14C]des-CIC; CYP2C8 and CYP2D6, but not CYP4A11 formed smaller amounts. It is concluded that the human hepatic metabolism of ciclesonide is primarily catalysed by one or more esterases and, subsequently, by CYP3A4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertz R.J., Granneman G.R. (1997): Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin. Pharmacokinet., 32, 210–258.

    Article  CAS  PubMed  Google Scholar 

  2. Lin J.H., Lu A.Y.H. (1998): Inhibition and induction of cytochrome P450 and clinical implications. Clin. Pharmacokinet., 35, 361–390.

    Article  CAS  PubMed  Google Scholar 

  3. Yao C, Levy R.H. (2002): Inhibition-based metabolic drug-drug interactions: Predictions from in vitro data. J. Pharm. Sei., 91, 1923–1935.

    Article  CAS  Google Scholar 

  4. Nelson D.R., Koymans L., Kamataki T., Stegeman J.J., Feyereisen R., Waxman D.J., Waterman M.R., Gotoh O., Coon M.J., Estabrook R.W., Gunsalus I.C., Nebert D.W. (1996): P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 6, 1–42.

    Article  CAS  PubMed  Google Scholar 

  5. Tucker G.T., Houston J.B., Huang S.-M. (2001): Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential—toward a consensus. Pharm. Res., 18, 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  6. Bjomsson T.D., Callaghan J.T., Einolf HJ., Fischer V., Gan L., Grimm S., Kao J., King S.P., Miwa G., Ni L., Kumar G., McLeod J., Obach R.S., Roberts S., Roe A., Shah A., Snikeris F., Sullivan J.T., Tweedie D., Vega J.M., Walsh J., Wrighton S.A. (2003): The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos., 31, 815–832.

    Article  Google Scholar 

  7. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951): Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275.

    CAS  PubMed  Google Scholar 

  8. Rutten A.A.J.J.L., Falke H.E., Catsburg J.F., Topp R., Blaauboer B.J., Van Holsteijn I., Doom L., Van LeeuwenF.X.R. (1987): Interlaboratory comparison of total cytochrome P-450 and protein determinations in rat liver microsomes. Reinvestigation of assay conditions. Arch. Toxicol., 61, 27–33.

    Article  CAS  PubMed  Google Scholar 

  9. Clarke S.E. (1998): In vitro assessment of human cytochrome P450. Xenobiotica, 28, 1167–1202.

    Article  CAS  PubMed  Google Scholar 

  10. Miners J.O., Smith K.J., Robson R.A., McManus M.E., Veronese M.E., Birkett D.J. (1988): Tolbutamide hydroxylation by human liver microsomes. Kinetic characterisation and relationship to other cytochrome P-450 dependent xenobiotic oxidations. Biochem. Pharmacol., 37, 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  11. Kronbach T., Mathys D., Gut J., Catin T., Meyer U.A. (1987): High-performance liquid chromatographic assays for bufuralol 1′-hydroxylase, debrisoquine 4-hydroxylase, and dextromethorphan O-demethylase in microsomes and purified cytochrome P-450 isozymes of human liver. Anal. Biochem., 162, 24–32.

    Article  CAS  PubMed  Google Scholar 

  12. Sonderfan A.J., Arlotto M.P., Dutton D.R., McMillen S.K., Parkinson A. (1987): Regulation of testosterone hydroxylation by rat liver microsomal cytochrome P-450. Arch. Biochem. Biophys., 255,27–41.

    Article  CAS  PubMed  Google Scholar 

  13. Parker G.L., Orton T.C. (1980): Induction by oxyisobutyrates of hepatic and kidney microsomal cytochrome P-450 with specificity towards hydroxylation of fatty acids. In: Gustafsson J., Carlstedt-Duke J., Mode A., Rafter J. (eds). Biochemistry, Biophysics and Regulation of Cytochrome P-450. Amsterdam: Elsevier/North-Holland Biomedical Press, 373–377.

    Google Scholar 

  14. Guo Z., Zhou X., Nave R., Liu D.W., Feng H., Wu J., Howell S.R., King S.P. (2005): Comparative in vitro metabolism of14C-ciclesonide in hepatocytes from the mouse, rat, rabbit, dog and human. Submitted to Xenobiotica.

  15. Clarke S.E., Jones B.C. (2002): Human cytochromes P450 and their role in metabolism-based drug-drug interactions. In: Rodrigues A.D. (ed). Drug-Drug Interactions New York and Basel: Marcel Dekker, 55–88.

    Google Scholar 

  16. Nave R., Drollman A., Steinijans V.W., Zech K., Bethke T.D. (2005): Lack of pharmacokinetic drug-drug interaction between ciclesonide and erythromycin. Int. J. Clin. Pharmacol. Ther., 43, 264–270.

    CAS  PubMed  Google Scholar 

  17. LeBouef E., Grech-Bélanger O. (1987): Deacetylation of diltiazem by rat liver. Drug Metab. Dispos., 15, 122–126.

    Google Scholar 

  18. Ono S., Hatanaka T., Hotta H., Satoh T., Gonzalez F.J., Tsutsui M. (1996): Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica, 26, 681–693.

    Article  CAS  PubMed  Google Scholar 

  19. Mutch E., Nave R., Zech K., Williams F.M. (2003): Esterases involved in the hydrolysis of ciclesonide in human tissues. Eur. Respir. J., 22 [Suppl.45], P1749.

    Google Scholar 

  20. Ong C.-E., Coulter, S., Birkert, D.J., Bhasker C.R., Miners, J.O. (2000): The xenobiotic inhibitor profile of cytochrome P4502C8. Br. J. Clin. Pharmacol., 50, 573–580.

    Article  CAS  PubMed  Google Scholar 

  21. Jönsson G., Ström A., Andersson P. (1995): Budesonide is metabolised by cytochrome P450 3A (CYP3A) enzymes in human liver. Drug Metab Dispos., 23, 137–142.

    PubMed  Google Scholar 

  22. Chu V., Zeng Z., Pan J., Wei Y.-Y. V., Rao Z., Chen J., King S.P. (2004) In vitro assessment of cytochrome P450 metabolic drug-drug interaction potential of ciclesonide. Drug Metab. Rev., 36 [Suppl. 1], 276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peet, C.F., Enos, T., Nave, R. et al. Identification of enzymes involved in Phase I metabolism of ciclesonide by human liver microsomes. European Journal of Drug Metabolism and Pharmacokinetics 30, 275–286 (2005). https://doi.org/10.1007/BF03190632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190632

Keywords

Navigation