Skip to main content
Log in

Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of baclofen in mice

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim of this study was the development of a pharmacokinetic-pharmacodynamic (PK/PD) model of the antinociceptive effect of baclofen in mice. We studied the dose response curve of the analgesic action of baclofen in mice by hot plate test. Baclofen produced a dose dependent antinociceptive effect with doses between 1–3 mg/kg administered intraperitoneally (i.p.) (ED50: 1.94 mg/kg of racemate) and this effect fits to a linear pharmacodynamic model. Blood and brain concentrations of (−)3H-baclofen were determined by Thin-Layer Chromatography (TLC) and counted in the scintillation-counter. The PK/PD models were analyzed with the PC-TOPFIT V.2.0 and the tests for distinguishing between models were several adjustment parameters as Akaike information criterion (AIC), Imbimbo criterion (Ip), standard desviation (SD) and the correlation coefficient (r2). Accordingly with these adjustment parameters, a 2 compartment open model was selected where plasma is the central compartment and brain is in the peripheral compartment. In this model, the effect is linked to the peripheral compartment.

When the antinociceptive effect of baclofen was plotted against blood concentration, the resulting curve exhibed an anticlockwise hysteresis loop, but on the other hand, when the antinociceptive effect was plotted against the brain concentration, the hysteresis was collapsed. These results confirmed the selected model in our study, as the best adjustment was shown when the pharmacological response was linked to the peripheral compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeFeudis F.V. (1977): GABA receptors in the vertebrate nervous system. Prog. Neurobiol., 9, 123–145.

    Article  PubMed  CAS  Google Scholar 

  2. Hösli L., Hösli E. (1978): Action and uptake of neurotransmitters in CNS tissue culture. Rev. Physiol. Biochem. Pharmac., 81, 135–188.

    Article  Google Scholar 

  3. Johnston G.A.R. (1978): Neuropharmacology of aminoacid inhibitory transmitters. Ann. Rev. Pharmacol. Toxicol., 18, 269–289.

    Article  CAS  Google Scholar 

  4. DeFeudis F.V. (1982): GABA-ergic analgesia-a naloxone insensitive system. Pharmac. Res. Commun., 14, 383–390.

    Article  CAS  Google Scholar 

  5. Sawynok J. (1984): GABA-ergic mechanisms in antinociception. Prog. Neuropsychopharmac. Biol. Psychiat., 8, 581–586.

    CAS  Google Scholar 

  6. Sivam S.P., Ho I.K. (1985): Minireview, GABA in morphine analgesia and tolerance. Life Sci., 37, 199–208.

    Article  PubMed  CAS  Google Scholar 

  7. Bowery N.G., Hill D.R., Hudson A.L., Doble A., Middlemiss D.N., Shaw J., Turnbull M.J. (1980): (−)-Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283, 92–94.

    Article  PubMed  CAS  Google Scholar 

  8. Metha A.K., Ticku M.K. (1987): Baclofen induces catatonia in rats. Neuropharmacology, 26, 1419–1423.

    Article  Google Scholar 

  9. Gray J.A., Goodwin G.M., Heal D.J., Green A.R. (1987): Hypothermia induced by baclofen, a possible index of GABAB receptor function in mice, is enhaced by antidepressant drugs and ECS. Brit. J. Pharmacol., 92, 863–870.

    CAS  Google Scholar 

  10. Aley K.O., Kulkarni S.K. (1990): Effect of baclofen, a GABAB agonist on forced swimming-induced immobility in mice. Arch. Int. Pharmacodyn., 307, 18–31.

    PubMed  CAS  Google Scholar 

  11. Sawynok J. (1987): GABAergic mechanism of analgesia: An update. Pharmacol. Biochem. Behav., 26, 463–474.

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen E., Arlien-Soborg P., Mai J. (1974): The mode of action of the GABA derivate baclofen in human spasticity. Acta Neurol. Scand., 50, 665–680.

    Article  PubMed  CAS  Google Scholar 

  13. Pinto O., DE S., Polikar M., Debono G. (1972): Results of international clinical trials with Lioresal. Postgrad. Med. J., 48 (5), 18–23.

    Google Scholar 

  14. Corly O., Roma G., Bacchini M., Battagliarini G., De Lorenzi P.P. (1984): Il baclofen come analgesico negli interventi di dilatazione, aspirazioni e curretage uterino. Min. Anest., 50, 401–405.

    Google Scholar 

  15. Balerio G.N. (1996): Efecto analgésico del baclofen: mediación del sistema GABAérgico. Doctoral Thesis. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires.

  16. Holford N.H.G., Sheiner L.B. (1981): Understanding the dose effect relationship: Clinical application of pharmacokinetic-pharmacodynamic models. Clin. Pharmacokinet., 6, 429–453.

    Article  PubMed  CAS  Google Scholar 

  17. Dahlström B.E., Paalzow L.K., Segre G., Agren A.J. (1978): Relation between morphine pharmacokinetics and analgesia. J. Pharmacokinet. Biopharm., 6, 41–53.

    Article  PubMed  Google Scholar 

  18. Bhargava H.N., Villar V.M., Gulati A., Chari G. (1991): Analgesic and hypothermic effects of intravenously administered morphine in the rat are related to its serum levels. J. Pharmacol. Exp. Ther., 258, 511–516.

    PubMed  CAS  Google Scholar 

  19. Walker J.S., Kasmerski L. (1988): Diflunisal pharmacodynamics in the experimental arthritis in rats. J. Rheumatol., 15, 1643–1647.

    PubMed  CAS  Google Scholar 

  20. Shibasaki J., Konishi R., Kitasaki T., Koizumi T. (1979): Relationship between blood levels and analgesic effects of acetaminophen in mice. Chem. Pharm. Bull., 27, 129–138.

    PubMed  CAS  Google Scholar 

  21. Granados-Soto V., Flores-Murrieta F.J., López-Muñoz F.J., Salazar L.A., Villarreal J.E., Castañeda-Hernández G. (1992): Relationship between paracetamol plasma levels and its analgesic effect in the rat. J. Pharm. Pharmacol., 44, 741–744.

    PubMed  CAS  Google Scholar 

  22. Granados-Soto V., López-Muñoz F.J., Castañeda-Hernández G., Salazar L.A., Villarreal J.E., Flores-Murrieta F.J. (1993): Characterization of the analgesic effects of paracetamol and caffeine combinations in the pain-induced functional impairment model in the rat. J. Pharm. Pharmacol., 45, 627–631.

    PubMed  CAS  Google Scholar 

  23. Eddy N.B., Leimbach D. (1953): Synthetic Analgesics. Dithienylbutenyl and Dithienylbutylamines. J. Pharmacol. Exp. Ther., 107, 385–393.

    PubMed  CAS  Google Scholar 

  24. Harris L.S., Pierson A.K. (1964): Some narcotic antagonists in the benzomorphan series. J. Pharmacol. Exp. Ther., 143, 141–148.

    PubMed  CAS  Google Scholar 

  25. Stahl E. (1969): Thin-Layer Chromatography. Springer-Verlag, Berlin, Heidelberg New York.

    Google Scholar 

  26. Heinzel G., Woloszczak R., Thomann P. (1993): Pharmacokinetic and Pharmacodynamic Data Analysis System for the PC. In: Heinzel G. and Tanswell P. Compartmental Analysis Methods Manual. Gustav Fisher-Stuttgart-Jena-New York. Part 3, 6–138.

    Google Scholar 

  27. Yamaoka K., Nakagawa T., Uno T. (1978): Application of Akaike_s Information Criterion (AIC) in the Evaluation of Linear Pharmacokinetic Equations. J. Pharmacokin. Biopharm., 6(2), 165–175.

    Article  CAS  Google Scholar 

  28. Imbimbo B.P., Imbimbo E., Daniotti S., Verotta D., Bassotti G. (1988): A new criterion for selection of pharmacokinetic multi-exponential equations. J. Pharm. Sci., 9, 784.

    Article  Google Scholar 

  29. Imbimbo B.P., Martinelli P., Rocchetti M., Ferrari G., Bassotti G., Imbimbo E. (1991): Efficiency of different criteria for selecting pharmacokinetic multiexponential equations. Biopharmaceutics & Drug Disposition, 12, 139–147.

    Article  CAS  Google Scholar 

  30. D’Arienzo M., Pennisi M., Zanolo G., Borsa M. (1984): Ketoprofen lysine: Ketoprofen serum levels and analgesic activity. Drugs Exp. Clin. Res., 10, 863–866.

    Google Scholar 

  31. Kohler G., Primbs P., Morand J., Rubelt C. (1985): Correlation between ketoprofen plasma levels and analgesic effect in acute lumbar pain and radicular pain. Clin. Rheumatol., 4, 399–404.

    Article  PubMed  CAS  Google Scholar 

  32. Laska E.M., Sunshine A., Marrero I., Olson N., Siegel C., McCormick N. (1986): The correlation between blood levels of ibuprofen and clinical analgesic response. Clin. Pharmacol. Ther., 40, 1–7.

    PubMed  CAS  Google Scholar 

  33. Inturrisi C.E., Portenoy R.K., Max M.B., Colburn W.A., Foley K.M. (1990): Pharmacokinetic-pharmacodynamic relationships of methadone infusions in patients with cancer pain. Clin. Pharmacol. Ther., 47, 565–577.

    PubMed  CAS  Google Scholar 

  34. Mandema J.W., Heijligers-Feijen C.D., Tukker E., De Boer A.G., Danhof M. (1991): Modeling of the effect site equilibration kinetics and pharmacodynamics of racemic baclofen and its enantiomers using quantitative EEG effect measures. J. Pharmacol. Exp. Ther., 261(1), 88–95.

    Google Scholar 

  35. Lammers M.W., Hekster Y.A., Keyser A., van Lier H., Meinardi H., Renier W.O. (1995): Neither dosage nor serum levels of antiepileptic drugs are predictive for efficacy and adverse effects. Pharm. World Sci., 17, 201–206.

    Article  PubMed  CAS  Google Scholar 

  36. Sveinbjornsdottir S., Sander J.W., Upton D., Thomson L.P., Patsalos P.N., Hirt D., Emre M., Lowe D., Duncan J.S. (1993): The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res., 16, 165–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balerio, G.N., Rubio, M.C. Pharmacokinetic-pharmacodynamic modeling of the antinociceptive effect of baclofen in mice. Eur. J. Drug Metab. Pharmacokinet. 27, 163–169 (2002). https://doi.org/10.1007/BF03190452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190452

Keywords

Navigation