Skip to main content
Log in

Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim of this study was to identify sulfotransferase (SULT) isoform(s) responsible for the formation of indoxyl sulfate from indoxyl (3-hydroxyindole). Indoxyl was incubated together with the co-substrate 3′-phosphoadenosine 5′-phosphosulfate (PAPS) and either human or rat liver cytosol or recombinant sulfotransferase enzymes. Formation of indoxyl sulfate from indoxyl was measured by HPLC and used for determination of sulfonation rates. Both cytosols sulfonated indoxyl with apparent Km values of 6.8±0.9 μM for human and 3.2±0.6 μM for rat cytosol. To help identify the isoform(s) of SULT responsible for indoxyl sulfate formation, indoxyl was incubated with human and rat liver cytosols and PAPS in the presence of isoform-specific SULT inhibitors. No inhibition was observed by DHEA, a specific hydroxysteroid sulfotransferase inhibitor, nor by oestrone, an inhibitor of oestrogen sulfotransferase. However, an aryl (phenol) sulfotransferase inhibitor, 2,6-dichloro-4-nitrophenol (DCNP), inhibited the formation of indoxyl sulfate with a IC50 values of 3.2 μM for human and 1.0 μM for rat cytosol indicating that human and rat aryl (phenol) sulfotransferases are responsible for the formation of indoxyl sulfate. When indoxyl was incubated with SULT1A1*2, a human recombinant aryl SULT, an apparent Km value of 5.6±1.8 μM was obtained. Kinetic studies with human and rat cytosols and human recombinant SULT1A1*2 gave similar kinetic values indicating that human and rat aryl sulfotransferases efficiently catalyze the formation of indoxyl sulfate, an important uremic toxin metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffel M.W. (1997): Sulfotransferases. In: Guengerich F.P. (ed). Comprehensive Toxicology Vol.3, Biotransformation. Oxford: Elsevier, 365–383.

    Google Scholar 

  2. Chou H.C., Ozawa S., Fu P.P., Lang N.P., Kadlubar F.F. (1998): Metabolic activation of methyl-hydroxylated derivatives of 7,12-dimethylbenz[a]anthracene by human liver dehydroepiandrosterone-steroid sulfotransferase. Carcinogenesis, 19, 1071–1076.

    Article  PubMed  CAS  Google Scholar 

  3. Banoglu E. (2000): Current status of the cytosolic sulfotransferases in the metabolic activation of promutagens and procarcinogens. Curr. Drug Metab., 1, 1–30.

    Article  PubMed  CAS  Google Scholar 

  4. King R.S., Teitel C.H., Kadlubar F.F. (2000): In vitro bioactivation of N-hydroxy-2-amino-α-carboline. Carcinogenesis, 21, 1347–1354.

    Article  PubMed  CAS  Google Scholar 

  5. Niwa T., Ise M. (1994): Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med., 124, 96–104.

    PubMed  CAS  Google Scholar 

  6. Niwa T., Ise M., Miyazaki T. (1994): Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am. J. Nephrol., 14, 207–212.

    Article  PubMed  CAS  Google Scholar 

  7. Niwa T., Takeda N., Tatematsu A., Maeda K. (1988): Accumulation of indoxyl sulfate, an inhibitor of drug binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography. Clin. Chem., 34, 2264–2267.

    PubMed  CAS  Google Scholar 

  8. Sims J., Renwick A.G. (1985): The microbial metabolism of tryptophan in rats fed a diet containing 7.5% saccharin in a two-generation protocol. Food Chem. Toxicol., 23, 437–444.

    Article  PubMed  CAS  Google Scholar 

  9. Banoglu E., Jha G.G., King R.S. (2001): Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokin., 26(4), 1–6.

    Google Scholar 

  10. Sekura R.D., Jakoby W.B. (1979): Phenol Sulfotransferases. J. Biol. Chem., 254, 5658–5663.

    PubMed  CAS  Google Scholar 

  11. Ademola J.I., Wester R.C., Maibach H.I. (1993): Metabolism of 3-indolylacetic acid during percutaneous absorption in human skin. J. Pharm. Sci., 82, 150–154.

    Article  PubMed  CAS  Google Scholar 

  12. Russel G.A., Kaupp G. (1969): Oxidation of carbanions. IV. Oxidation of indoxyl to indigo in basic solution. J. Am. Chem. Soc., 91, 3851–3859.

    Article  Google Scholar 

  13. Perella F.W. (1988): A practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem., 174, 437–447.

    Article  Google Scholar 

  14. Duffel M.W., Binder T.P., Rao S.I. (1989): Assay of purified aryl sulfotransferase suitable for reactions yielding unstable sulfuric acid esters. Anal. Biochem., 183, 320–324.

    Article  PubMed  CAS  Google Scholar 

  15. Frame L.T., Ozawa S., Nowell S.A., Chou H.C., DeLongchamp R.R., Doerge D.R., Lang N.P., Kadlubar, F.F. (2000): A simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols. Drug Metab. Dispos., 28, 1063–1068.

    PubMed  CAS  Google Scholar 

  16. Campbell N.R.C., Van Loon J.A., Weinshilboum R.M. (1987): Human liver phenol sulfotrasferase: Assay conditions, biochemical-properties and partial purification of isozymes of the thermostable form. Biochem. Pharmacol., 36, 1435–1446.

    Article  PubMed  CAS  Google Scholar 

  17. Banoglu E., Duffel M.W. (1997): Studies on the interactions of chiral secondary alcohols with rat hydroxysteroid sulfotransferase STa. Drug Metab. Dispos., 25, 1304–1310.

    PubMed  CAS  Google Scholar 

  18. Rein G., Glover V., Sandler M. (1982): Multiple forms of phenolsulphotransferase in human tissues. Biochem. Pharmacol., 31, 1893–1897.

    Article  PubMed  CAS  Google Scholar 

  19. Hernandez J.S., Watson W.G., Wood T.C., Weinshilboum R.M. (1992): Sulphation of estrone and 17b-estradiol in human liver: Catalysis by thermostable phenol sulfotransferase and by dehydroepiandrosterone sulfotransferase. Drug Metab. Dispos., 20, 413–422.

    PubMed  CAS  Google Scholar 

  20. Koster H., Halsema I., Scholtens E., Meerman J.H.N., Pang S., Mulder G.J. (1982): Selective inhibition of sulfate conjugation in the rat. Biochem. Pharmacol., 31, 1919–1924.

    Article  PubMed  CAS  Google Scholar 

  21. Watabe T., Hiratsuka A., Ogura K. (1987): Sulphotransferase-mediated covalent binding of the carcinogen 7,12-dihydroxymethyl[a]anthracene to calf thymus DNA and its inhibition by glutathione transferase. Carcinogenesis, 8, 445–453.

    Article  PubMed  CAS  Google Scholar 

  22. Chen G., Banoglu E., Duffel M.W. (1996): Influence of substrate structure on the catalytic efficiency of hydroxysteroid sulfotransferase STa in the sulfation of alcohols. Chem. Res. Toxicol., 9, 67–74.

    Article  PubMed  CAS  Google Scholar 

  23. Falany C.N., Krasnykh V., Falany J.L. (1995): Bacterial expression and characterisation of a cDNA for human liver estrogen sulfotransferase. J. Steroid Biochem. Mol. Biol., 52, 529–539.

    Article  PubMed  CAS  Google Scholar 

  24. Niwa T. (1996): Organic acids and the uremic syndrome: protein metabolite hypothesis in the progression of chronic renal failure. Sem. Nephrol., 16, 167–182.

    CAS  Google Scholar 

  25. Miyazaki T., Ise M., Seo H., Niwa T. (1997): Indoxyl sulfate increases the gene expressions of TGF-b1 and pro-a1(I) collagen in uremic rat kidneys. Kidney Int., 52, S15-S22.

    Google Scholar 

  26. Sakai T., Takadate A., Otagiri M. (1995): Characterization of binding site of uremic toxins on human serum albumin. Biol. Pharmaceut. Bull., 18, 1755–1761.

    CAS  Google Scholar 

  27. Raftogianis R.B., Wood T.C., Weinshilboum R.M. (1999): Human phenol sulfotransferases SULT1A2 and SULT1A1. Biochem. Pharmacol., 58, 605–616.

    Article  PubMed  CAS  Google Scholar 

  28. Price R.A., Spielman R.S., Lucena A.L., Van Loon J.A., Maidak B.L., Weinshilboum R.M. (1989): Genetic polymorphism for human platelet thermostable phenol sulfotransferase (TS PST) activity. Genetics, 122, 905–914.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banoglu, E., King, R.S. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 27, 135–140 (2002). https://doi.org/10.1007/BF03190428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190428

Keywords

Navigation