Pharmacokinetics of phenytoin following intravenous and intramuscular administration of fosphenytoin and phenytoin sodium in the rabbit

  • S. N. Muchohi
  • G. O. Kokwaro
  • T. E. Maitho
  • R. W. Munenge
  • W. M. Watkins
  • G. Edwards


The purpose of this study was to evaluate and compare plasma phenytoin concentration versus time profiles following intravenous (i.v) and intramuscular (i.m) administration of fosphenytoin sodium with those obtained following administration of standard phenytoin sodium injection in the rabbit. Twenty-four adult New Zealand White rabbits (2.1±0.4 kg) were anaesthetized with sodium pentobarbitone (30 mg/kg) followed by i.v or i.m administration of a single 10 mg/kg phenytoin sodium or fosphenytoin sodium equivalents. Blood samples (1.5 ml) were obtained from a femoral artery cannula predose and at 1, 3, 5, 7, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240 and 300 min after drug administration. Plasma was separated by centrifugation (1000 g; 5 min) and fosphenytoin, total and free plasma phenytoin concentrations were measured using high performance liquid chromatography (HPLC). Following i.v administration of fosphenytoin sodium plasma phenytoin concentrations were similar to those obtained following i.v administration of an equivalent dose of phenytoin sodium. Mean peak plasma phenytoin concentrations (Cmax) was 158% higher (P=0.0077) following i.m administration of fosphenytoin sodium compared to i.m administration of phenytoin sodium. The mean area under the plasma total and free phenytoin concentration-time curve from time zero to 120 min (AUC0−120) following i.m administration was also significantly higher (P=0.0277) in fosphenytoin treated rabbits compared to the phenytoin group. However, there was no significant difference in AUC0−180 between fosphenytoin and phenytoin-treated rabbits following i.v administration. There was also no significant difference in the mean times to achieve peak plasma phenytoin-concentrations (Tmax) between fosphenytoin and phenytoin-treated rabbits following i.m administration. Mean plasma albumin concentrations were comparable in both groups of animals. Fosphenytoin was rapidly converted to phenytoin both after i.v and i.m administration, with plasma fosphenytoin concentrations declining rapidly to undetectable levels within 10 min following administration via either route. These results confirm the rapid and complete hydrolysis of fosphenytoin to phenytoin in vivo, and the potential of the i.m route for administration of fosphenytoin delivering phenytoin in clinical settings where i.v administration may not be feasible.


Fosphenytoin phenytoin intravenous intramuscular rabbit pharmacokinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brewster D.R., Kwiatkowski D., White N.J. (1990): Neurological sequelae of cerebral malaria in children. Lancet, 336: 1039–1043.CrossRefPubMedGoogle Scholar
  2. 2.
    Marsh K., Forster D., Waruiru C., Mwangi I., Marsh V., Newton C., Winstanley P.A., Warn P., Peshu N., Pasvol G., Snow R.W. (1995): Indicators of life-threatening malaria in African children: N. Engl. J. Med., 332: 1399–1404.CrossRefPubMedGoogle Scholar
  3. 3.
    Warrell D.A., Molyneux M., Beales P.F. (1990): Severe and complicated malaria. Trans. R. Soc. Trop. Med. Hyg., 84 (Suppl. 2): 1–65.Google Scholar
  4. 4.
    Greenwood B.M., Bradley A.K., Greenwood A.M., Byass P., Jammeh K., Marsh K., Tulloch S., Oldfield F.S.J., Hayes R. (1987): Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Trans. R. Soc. Trop. Med. Hyg., 81: 478–486.CrossRefPubMedGoogle Scholar
  5. 5.
    Sturchler D. (1990): How much malaria is there wordwide? Parasitol. Today, 5: 12.Google Scholar
  6. 6.
    Molyneux M.E., Taylor T.E., Wirima J.J., Borgstein A. (1989): Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q. J. Med., 71: 441–459.PubMedGoogle Scholar
  7. 7.
    English M., Waruiru C., Marsh K. (1996): Transfusion for life-threatening respiratory distress in severe childhood malaria. Am. J. Trop. Med. Hyg., 55: 525–530.PubMedGoogle Scholar
  8. 8.
    Crawley J., Smith S., Kirkham F., Muthinji P., Waruiru C., Marsh K. (1996): Seizures and status epilepticus in childhood cerebral malaria. Q. J. Med., 89: 591–597.Google Scholar
  9. 9.
    Serrano E.E., Wilder B.J. (1974): Intramuscular administration of diphenylhydantoin. Histologic follow-up studies. Arch. Neurol., 31: 276–278.PubMedGoogle Scholar
  10. 10.
    Browne T.R. (1997): Fosphenytoin (Cerebyx®). Clin. Neuropharmacol., 20: 1–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Cranford R.E., Leppik I.E., Patrick B., Anderson CB, Kostick B. (1978): Intravenous phenytoin: clinical and pharmacokinetic aspects. Neurology, 28: 874–880.PubMedGoogle Scholar
  12. 12.
    Leppik I.E., Boucher B.A., Wilder B.J., Murphy V.S., Watridge N.M., Rangel R.J., Rask C.A., Turapaty P. (1990): Pharmacokinetics and safety of a phenytoin prodrug given i.v. or i.m. in patients. Neurology, 40: 456–460.PubMedGoogle Scholar
  13. 13.
    Jamerson B.D., Donn K.H., Dukes G.E., Messenheimer J.A., Brouwer K.L., Powell J.R. (1990): Absolute bioavailability of phenytoin after 3-phosphoryloxymethyl phenytoin disodium (ACC-9653) administration to humans. Epilepsia, 31: 592–597.CrossRefPubMedGoogle Scholar
  14. 14.
    Fischer J.H., Turnbull T.L., Ultman B.S., Wilder E.S., Casrino G. (1995): Neurology, 45 (Suppl. 4): A202.Google Scholar
  15. 15.
    Fierro L.S., Savulich D.H., Benezra D.A. (1996): Safety of fosphenytoin sodium. Am. J. Health Syst. Pharm., 53: 2707–2712.PubMedGoogle Scholar
  16. 16.
    Uthman B.M., Wilder B.J., Ramsey R.E. (1996): Intramuscular use of fosphenytoin: an overview. Neurology, 46 (Suppl. 1): S24-S28.PubMedGoogle Scholar
  17. 17.
    Boucher B.A. (1996): Fosphenytoin: a new phenytoin prodrug. Pharmacotherapy, 16: 777–791.PubMedGoogle Scholar
  18. 18.
    Boucher B.A., Bombassaro A.M., Rasmussen S.N., Watridge C.B., Achari R., Turlapaty P. (1989): Phenytoin prodrug 3-phosphryloxymethyl phenytoin (ACC-9653): pharmacokinetics in patients following intravenous and intramuscular administration. J. Pharm. Sci., 78: 929–932.CrossRefPubMedGoogle Scholar
  19. 19.
    Cwik M.J., Liang M., Deyo K., Andrews C., Fischer J. (1997): Simultaneous rapid high-performance liquid chromatographic determination of phenytoin and its prodrug, fosphenytoin in human plasma and ultrafiltrate. J. Chromatogr., 693: 407–414.CrossRefGoogle Scholar
  20. 20.
    Gibaldi M., Perrier P. (1982): In: Pharmacokinetics, 2nd ed., New York: Marcel Decker, 445–449.Google Scholar
  21. 21.
    Heinzel G., Woloszczak R., Thomann P. (1993): TopFit (Version 2.0). Pharmacokinetic and Pharmacodynamic Data Analysis System for the PC. Stuttgart, Germany: Schering AG, Gustav Fischer.Google Scholar
  22. 22.
    Varia S.A., Stella V.J. (1984a): Phenytoin prodrugs V. In vivo evaluation of a phosphate ester prodrug of phenytoin after parenteral administration to rats. J. Pharm. Sci., 73: 1087–1090.CrossRefPubMedGoogle Scholar
  23. 23.
    Varia S.A., Stella V.J. (1984b): Phenytoin prodrugs V In vivo evalution of some water-soluble phenytoin prodrugs in dogs. J. Pharm. Sci., 73: 1080–1087.CrossRefPubMedGoogle Scholar
  24. 24.
    Jusko, W.J., Koup, J.R., Alvan, G. (1976): Nonlinear assessment of phenytoin bioavailability. J. Pharmacokinet. Biopharm., 4: 327–336.CrossRefPubMedGoogle Scholar
  25. 25.
    Cusack B.J., Tesnohlidek V.L., Loseke R.M., Eggerth R.M., Olson R.D. (1987): Phenytoin pharmacokinetics in the rabbit: evidence of rapid autoinduction. Res. Commun. Chem. Pathol. Pharmacol., 58: 269–272.PubMedGoogle Scholar
  26. 26.
    Walton N.Y., Uthman B.M., Yafi K.E., Kim J.M., Triman D.M. (1999): Phenytoin penetration into brain after administration of phenytoin or fosphenytoin. Epilepsia, 40: 153–156.CrossRefPubMedGoogle Scholar
  27. 27.
    Winstanley P., Newton C, Pasvol G., Kirkham F., Mberu E., Ward S., Were J., Warrell D., Marsh K. (1992): Prophylactic phenobarbitone in young children with severe falciparum malaria: Pharmacokinetics and clinical effects. Br. J. Clin. Pharmacol., 33: 149–154.PubMedGoogle Scholar
  28. 28.
    Crawley J., Waruiru C., Mithwani S., Mwangi I., Watkins W., Ouma D., Winstanley P., Peto T., Marsh K. (2000): Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study. Lancet, 355: 701–706.CrossRefPubMedGoogle Scholar
  29. 29.
    Ogutu B.R., Newton C.R.J.C., Muchohi S.N., Otieno G.O., Edwards G., Watkins W.M., Kokwaro G.O. (2002). Pharmacokinetics and clinical effects of phenytoin in children with malaria and convulsions. ManuscriptGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • S. N. Muchohi
    • 1
    • 3
  • G. O. Kokwaro
    • 1
    • 2
  • T. E. Maitho
    • 3
  • R. W. Munenge
    • 3
  • W. M. Watkins
    • 1
    • 4
  • G. Edwards
    • 4
    • 5
  1. 1.Kenya Medical Research Institute [KEMRI]Wellcome Trust Collaborative Research ProgrammeNairobiKenya
  2. 2.Department of Pharmaceutics & Pharmacy Practice, Faculty of PharmacyUniversity of NairobiNairobiKenya
  3. 3.Department of Public Health, Pharmacology & Toxicology, Faculty of Veterinary MedicineUniversity of NairobiNairobiKenya
  4. 4.Department of Pharmacology & TherapeuticsUniversity of LiverpoolLiverpoolUK
  5. 5.Division of Parasite & Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK

Personalised recommendations