Skip to main content
Log in

Lipid peroxidation: the role of Ca2+ and protection by calcinine

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

When calcinine (A-23187) (2 μM), a known Ca2+ ionophore, is present, a significant protection is observed to a mitochondrial suspension undergoing lipid peroxidation by Fe2+-citrate complex. A-23187 can remove Ca2+, which seems to have an important role in the lipid peroxidation process, from its ‘lesive sites’ and consequently preventing the damage. This information has importance in terms of knowing the mechanisms and avoiding the damages of lipid peroxidation that occur in some pathological cases such as tumor promotion and hemochromatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EGTA:

ethyleneglycolbis (β-amino-ethyl ether) N,N’-tetraacetic acid

TPP:

tetraphenylphosphonium

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

RLM:

rat liver mitochondria; and ΔΨ transmembrane electrical potential

References

  1. Slater T.F. (1972): Free Radical Mechanisms in Tissue Injury. London, Pion Limited.

    Google Scholar 

  2. Pryor W.A. (1978): The formation of free radicals and the consequences of their reactions in vivo. Photochem. Photobiol., 28, 787–801.

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B., Gutteridge J.M.C. (1984): Oxygen toxicity oxygen radicals, transition metals and disease. Biochem. J., 219, 1–14.

    CAS  PubMed  Google Scholar 

  4. Gutteridge J.M.C. (1991): Hydroxyl radical formation from the autoreduction of a ferric citrate complex. Free Rad. Biol. Med., 11, 401–406.

    Article  CAS  PubMed  Google Scholar 

  5. Baker M.S., Gebicki J.M. (1986): The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelators. Arch. Biochem. Biophys., 246, 581–588.

    Article  CAS  PubMed  Google Scholar 

  6. Crosby W.H. (1987): Hemochromatosis: current concepts and management. Hosp. Pract., 22, 17–21.

    Google Scholar 

  7. Cerutti P.A. (1985): Prooxidant states and tumor promotion. Science, 227, 373–381.

    Article  Google Scholar 

  8. Wolkowicz P.E., McMillin-Wood J. (1980): Dissociation between mitochondrial calcium ion release and pyridine nucleotide oxidation. J. Biol. Chem., 255, 10348–10353.

    CAS  PubMed  Google Scholar 

  9. Debono M., Molloy R.M., Dorman D.E., et al. (1981): Synthesis and characterization of halogenated derivatives of the ionophore A-23187: enhanced calcium ions transport specificity by the 4-bromo derivative. Biochemistry, 20, 6865–6872.

    Article  CAS  PubMed  Google Scholar 

  10. Kamo N., Muratsugo M., Ruji H., Kobatake J. (1979): Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady-state. J. Membr. Biol., 48, 105–121.

    Google Scholar 

  11. Muratsugu M., Kamo K., Kurihara K., Kobatake J. (1977): Selective electrode for dibenzyl ammonium cation as indicator of membrane potential in biological systems. Biochim. Biophys. Acta, 464, 613–619.

    Article  CAS  PubMed  Google Scholar 

  12. Jelisen B.D., Gunter K.K., Gunter T.E. (1986): The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Arch. Biochem. Biophys., 248, 305–323.

    Article  Google Scholar 

  13. Bindoli A., Cavallini L., Siliprandi N. (1977): Effect of thiol oxidation on lipid peroxidation in rat liver mitochondria. Chem. Biol. Interact., 19, 383–386.

    Article  CAS  PubMed  Google Scholar 

  14. Pereira R.S., Bertocchi A.P.F., Vercesi A.E. (1992): Protective effect of trifluoperazine on the mitochondrial damage induced by Ca2+ plus prooxidants. Biochem. Pharmacol., 44, 1795–1801.

    Article  CAS  PubMed  Google Scholar 

  15. Kosower N.S., Kosower E.M. (1978): The glutathione status of cells. Int. Rev. Cytol., 54, 109–160.

    Article  CAS  PubMed  Google Scholar 

  16. Fagian M.M., Pereira-da-Silva L., Martins I.S., Vercesi A.E. (1990): Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. J. Biol. Chem., 265, 19955–19960.

    CAS  PubMed  Google Scholar 

  17. Nagarkatti M., Nagarkatti P.S. (1989): Calcium ionophores at concentrations mitogenic to normal murine T cells inhibit the proliferation of tumor cells in vitro. Cancer Commun., 1, 329–334.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, R.S. Lipid peroxidation: the role of Ca2+ and protection by calcinine. European Journal of Drug Metabolism and Pharmacokinetics 21, 23–26 (1996). https://doi.org/10.1007/BF03190274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190274

Keywords

Navigation