Skip to main content
Log in

The disposition of SK&F L-94901, a selective thyromimetic in rat, dog and cynomolgus monkey

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

SK&F L-94901 is a novel thyromimetic, structurally related to thyroxine. The absorption, distribution, excretion and metabolism of radiochemically labelled [14C]-SK&F L-94901 has been investigated in the rat, dog and cynomolgus monkey. Oral absorption from solution was l ow or moderate in all three species. The compound was widely distributed and rapidly excreted, although traces of radioactivity were still evident in some tissues at 7 days post-dose, particularly in the kidney where radioactivity was located in an area approximating to the corticomedullary junction. Elimination of [14C]-SK&F L-94901 was both metabolic, mediated by the liver, and renal. The major metabolic routes of elimination were via oxidative deamination to lactate and acetate derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

m:

multiplet

q:

quartet

t:

triplet

d:

doublet

s:

singlet

References

  1. Underwood A.H., Emmett J.C., Ellis D., et al. (1986): A thyrornimetic that decreases plasma cholestérol levels without increasing cardiac activity. Nature, 324, 425–429.

    Article  PubMed  CAS  Google Scholar 

  2. Crowe A.M., Lawrie K.W.M., Saunders D. (1988): Synthesis of [14C]-SK&F L-94901, a novel thyrornimetic. J. Labelled Comp. Radiopharm., 25, 763–772

    Article  CAS  Google Scholar 

  3. Hickey D.M.B., Leeson P.D., Novelli R., et al. (1988): Synthesis of thyroid hormone analogues. Part HI. Iodonium salt approaches to SK&F L-94901. J. Chem. Soc. Perkin Trans., 1, 3103

    Article  Google Scholar 

  4. Chipman J.X., Cropper N.C. (1977): A technique for chronic intermittent bile collection from the rat. Res. Vet. Sci., 22, 366–370.

    PubMed  CAS  Google Scholar 

  5. Strom S.C., Jirtle R.L., Jones R-S., et al. (1982): Isolation, culture and transplantation of human hepatocytes. J. Natl. Cancer Inst., 68, 771–778.

    PubMed  CAS  Google Scholar 

  6. Flock E.V., David C., Stobie G.H.C., Owen C.A. (1963): 3,3′5′-Triiodorayronine and 3,3′-diiodothvroiiine: Partially deiodinated intermediates in the metabolism of thyroid hormones. Endocrinology, 73, 442–455.

    Article  PubMed  CAS  Google Scholar 

  7. Takai N.A., Rapoport B., Yamamoto M. (1980): Biliary excretion of iodo thyronines in rats as determined by high pressure liquid chromatography: Effect of starvation. Endocrinology, 107, 176–182.

    Article  PubMed  CAS  Google Scholar 

  8. Kennedy S., Atterwffl C., Poole A. (1988): Pathology of SK&F L-94901, a potent thyrornimetic in the rat. The Toxicologist, Abstracts of 27th Annual Meeting, 8, Abstract No. 348.

  9. Franklin E.R., Chasseaud L.F., Taylor T. (1977): The distribution of radioactivity in pregnant rats after repeated oral doses of the diuretic agent Etozolin. Arzneimittelforsch., 27, 1800.

    PubMed  CAS  Google Scholar 

  10. Benard P., Braun J.P., Rico A.G. (1986): Whole-body autoradiography as a tool for prediction of nephrotoxicity of xenobiotics. Proc. R. Microscopical Soc., 21, 277.

    Google Scholar 

  11. Faber J. (1984): The metabolism of iodothyronines in health and disease with special reference to diiodothyronines. Danish Med. Bull., 31, 257–270.

    PubMed  CAS  Google Scholar 

  12. Van Middlesworth L. (1974): Metabolism and excretion of thyroid hormones. In: Green M.A., Solomon D.H. eds. Handbook of Physiology, Section 7: Endocrinology, vol. Ill: Thyroid. Washington, Am. Physiol. Soc., pp. 215–231.

    Google Scholar 

  13. Fletcher K. (1957): The fractionation of urinary iodine 2. Metabolites excreted during treatment of carcinoma of the thyroid. Biochem. J., 67, 140–146

    PubMed  CAS  Google Scholar 

  14. Tomita K., Lardy H.A., Larson F.C., Albright E.C. (1956): Enzymatic conversion of thyroxine to tetraacetic acid and of triiodothyronine to triiodothyroacetic acid. J. Biol. Chem., 244, 387–397

    Google Scholar 

  15. Etling N., Barker S.B. (1959): Metabolism of thyroxine during prolonged kidney cortex incubations. Endocrinology, 64, 753–765.

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura Y., Chopra I.J., Solomon D.H. (1978): An assessment of the concentration of acetic acid and propionic acid derivatives of 3,5,3′-triiodothyronine in human serum. J. Clin. Endocrinol. Metab., 46, 91–97.

    Article  PubMed  CAS  Google Scholar 

  17. Gavin L.A., Livermore B.M., Cavalieri R.R., Hammond M.E., Castle J.N. (1980): Serum concentration, metabolic clearance, and production rates of 3,5,3′-triiodoacetic acid in normal and athyreotic man. J. Clin. Endocrinol. Metab., 51, 529–534.

    Article  PubMed  CAS  Google Scholar 

  18. Pittman C.S., Shimizu T., Burger A., Chambers J.R. (1980): The nondeiodinative pathways of thyroxine metabolism: 3,5,3′5′-tetraiodoacetic acid turnover in normal and fasting human subjects. J. Clin. Endocrinol. Metab., 50, 712–716.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pue, M.A., Ransley, J.A., Writer, D.J. et al. The disposition of SK&F L-94901, a selective thyromimetic in rat, dog and cynomolgus monkey. European Journal of Drug Metabolism and Pharmacokinetics 14, 209–219 (1989). https://doi.org/10.1007/BF03190101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190101

Key words

Navigation