Skip to main content
Log in

Non-linear tissue binding of amikacin in rats: the effect of renal impairment

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Amicakin levels in serum and tissues were determined in 115 Wistar rats, 70 with normal renal function (NRF) and the remaining 45 with terminal renal impairment (TRI). The results obtained in the animals with NRF show an accumulation of the antibiotic in all the tissues studied as compared with plasma levels, specially in the renal cortex and medulla. In the rats with TRI important alterations in the plasma and tissue kinetics of the antibiotics were observed. The plasma kinetics of amikacin in rats with TRI are characterised by significant alterations in the pharmacokinetic parameters, specially those defining the distribution processes of the antibiotic. In the tissues of the latter, a significant increase in the antibiotic concentration takes place, particularly in the renal cortex. The average halflives of the antibiotic in the tissues of rats with TRI increase compared with the group of rats with NRF, though the difference are not so significant as in the case of the plasma half-life.

The use of a specific kinetic distribution model, with linear and non-linear tissue binding, showed that significant variations occur in the partition coefficient and in the Michaelis-Menten parameters, which characterize the saturable binding of Amikacin to tissue in rats with NRF and TRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welling P.G., Craig W.A. (1976): In Benet L.Z. (ed) ‘The effect of disease states on drug pharmacokinetics’. Washington American Pharmaceutical Association, pp. 155–187.

  2. Carbon C., Contrepois A., Lamotte-Barrillon S. (1978): Comparative distribution of gentamicin, tobramycin, sisomicin, netilmicin and amikacin in interstitial fluid in rabbits. Antimicrob. Agents Chemother.13, 368–372.

    CAS  PubMed  Google Scholar 

  3. Schentag J.J., (1978): Accumulation des aminosides dans le parenchyma renal. Nouv. Presse Med.7, 3824–3829.

    CAS  PubMed  Google Scholar 

  4. Rudhart M., Blanchard P., Fabre J. (1978): Accumulation et persistence des aminosides dans le parenchyma renal. Nouv. Presse Med.7, 3819–3823.

    Google Scholar 

  5. Mondorf A.W. (1978): Action des aminosides et des cephalosporins sur le tube proximal du rein human. Nouv. Presse Med.7, 3835–3837.

    CAS  PubMed  Google Scholar 

  6. Rudhart M., Fabre J. (1979): Behaviour of amikacin in renal parenchyma of normal rats with acute obstructive renal insufficiency. Nephron.24, 287–291.

    Article  Google Scholar 

  7. Flamenbaum W., Huddieston U.L., McNeil H.S., Hamburger R.J. (1974): Uranyl nitrate-induced acute renal failure in the rat: Micropuncture and renal hemodynamic studies. Kidney Int.6, 408–418.

    Article  CAS  PubMed  Google Scholar 

  8. Hewitt W. (1977): In ‘Microbiological Assay: An introduction to quantitative principles and evaluation’. New York, Academic Press Inc., pp. 17–101.

    Google Scholar 

  9. Metzler C.M., Elfring L.G., McEwen A.J. (1974): A package of computer program for pharmacokinetics modeling. Biometrics30, 512–513.

    Article  Google Scholar 

  10. Wagner J.G. (1975): In ‘Fundamentals of clinical pharmacokinetics’. Hamilton, Illinois. Drug Intelligence Publications Inc. pp. 82–90.

    Google Scholar 

  11. Walker J.M., Wise R., Mitchard M.J. (1979): The pharmacokinetics of amikacin and gentamicin in volunteers: A comparison of individual differences. J. Antimicrob. Chemother.5, 95–99.

    Article  CAS  PubMed  Google Scholar 

  12. Mahon W.A., Inaba T., Ezer J.I. (1975): Studies using tritiated amikacin. Syracuse, New York. Bristol Laboratories Files, p. 13201.

    Google Scholar 

  13. Koeda T., Umemura K., Yokota M. (1982): In Umezawa H., Hooper I.R. eds. ‘Aminoglycoside Antibiotics’. Berlin-Heidelberg-New York. Springer-Verlag.62, pp. 293–356.

    Google Scholar 

  14. Schentag J.J., Jusko W.J., Vance J.W., Cumbo T.H., Abrutyn E., Delattre M., Gerbracht L.M. (1977): Gentamicin disposition and tissue accumulation in multiple dosing. J. Pharmacokinet. Biopharm.5(6), 559–579.

    Article  CAS  PubMed  Google Scholar 

  15. Kornguth M., Kunin C. (1977): Distribution of gentamicin and amikacin in rabbit tissues. Antimicrob. Agents Chemother.12, 974–977.

    Google Scholar 

  16. Ditter L.W. (1976): Pharmacokinetics of aminoglycosides: General considerations. U.S. Amikacin Symposium. Am. J. Med. pp. 77–83.

  17. Trouet A., Tulkens P. (1981): In Ninet L., Bost P. E., Bouanchaud D.H., Florent J. eds. ‘The future of antibiotherapy and antibiotic research’ London Academic Press Inc. pp. 337–349.

    Google Scholar 

  18. Wagner J.G. (1973): Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics. J. Pharmacokinet. Biopharm.1, 103.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, I.G., Lanao, J.M., Saez, M.C. et al. Non-linear tissue binding of amikacin in rats: the effect of renal impairment. European Journal of Drug Metabolism and Pharmacokinetics 12, 193–201 (1987). https://doi.org/10.1007/BF03189897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03189897

Key words

Navigation