Skip to main content
Log in

Diazepam: Kinetic profiles in various brain areas, plasma and erythrocytes after chronic administration in the rat

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The regional distribution of diazepam (DZP) was established in eleven discrete brain areas in the rat afteri.m. chronic treatment (15 days; 5 mg/kg/day). In addition, the kinetic profiles of this drug were investigated in plasma, eryhtrocytes, and three CNS regions (nucleus caudatus, hippocampus, and cerebellum) upon which the pharmacokinetic study was focused. The modifications occuring in plasma-protein binding and erythrocytes binding were reported. In the CNS, the DZP was rapidly distributed; its concentrations and its kinetic profiles were not uniform in the different brain areas studied. The highest amount of DZP was noted in the hypothalamus, while nucleus caudatus and colliculi also presented important DZP levels. Concerning the kinetic parameters after chronic administration, an increase in the elimination half-life time value in central and peripheral compartments, as compared to values reported after acute administration, was observed. The study of cerebral DZP levels as compared with those in the erythrocytes or in plasma suggests a linear correlation in the three CNS areas investigated. These experimental results demonstrate the interest of such studies for psychotropic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balantuono C., Reggi G., Tognoni G. and Garattini S. (1980): Drugs: Benzodiazepines clinical pharmacology and therapeutic use,19, 195–219.

    Article  Google Scholar 

  2. Browne T.R. and Penry J.K. (1973): Epilepsia: Benzodiazepines in the treatment of epilepsy. A review,14, 277–310.

    CAS  Google Scholar 

  3. Mandelli M., Tognoni G. and Garattini S. (1978): Clin. Pharmacokinet.: Clinical pharmacokinetics of diazepam.3, 72–91.

    Article  CAS  PubMed  Google Scholar 

  4. Valli M., Jadot G., Bruguerolle B., Hariton C. et Bouyard P. (1982): Thérapie: A propos du passage intraérythrocytaire de six médicaments.37, 601–602.

    Google Scholar 

  5. Hariton C., Valli M., Jadot G., Bruguerolle B. et Bouyard P. (1982): in Pharmacologie et Toxicologie Vétérinaires, Les Colloques de l’INRA,8, p. 143–146, INRA Publ., Paris.

    Google Scholar 

  6. Jadot G., Bruguerolle B., Valli M. et Bouyard P. (1980): Ann. Biol. Clin.: Détermination de la fraction plasmatique libre des substances médicamenteuses.38, 379–380.

    CAS  Google Scholar 

  7. Glowinski J. and Iversen L.L. (1966): J. Neurochem.: Regional studies of catecholamines in the rat brain. Part. I.13, 655–669.

    Article  CAS  PubMed  Google Scholar 

  8. Zingales I.A. (1973): J. Chromatogr.: Diazepam metabolism during chronic medication. Unbound fraction in plasma, erythrocytes and urine.75, 55–78.

    Article  CAS  PubMed  Google Scholar 

  9. Garattini S., Marcucci F. and Mussini E. (1969): In Ciba Foundation Symposium on Gas Chromatography in Biology and Medicine, p. 161–172, R. Porter, London.

    Google Scholar 

  10. Gomeni C. and Gomeni R. (1978): Comput. Biomed. Res.: IGPHARM, Interactive graphic package for pharmacokinetic analysis.11, 345–361.

    Article  CAS  PubMed  Google Scholar 

  11. Marcucci F., Guaitani A., Kvétina J., Mussini E. and Garattini S. (1968): Eur. J. Pharmacol.: Species differences In diazepam metabolism and anticonvulsant effect.4, 467–470.

    Article  CAS  PubMed  Google Scholar 

  12. Garattini S., Mussini E., Marcucci F. and Guaitini A. (1973): in The Benzodiazepines. Ed.: Garattini S., Mussini E. and Randall L.O. p. 75–97, Raven Press, New York.

    Google Scholar 

  13. Caccia S., Carli M., Garattini S., Poggesi E., Rech R. and Samanin R. (1980): Arch. Int. Pharmacodyn.: Pharmacological activities of clobazam and diazepam in the rat. Relation to drug brain level.243, 275–283.

    CAS  PubMed  Google Scholar 

  14. Squires R.F. and Breastrup C. (1977): Nature (London): Benzodiazepine receptor in rat brain.266, 732–734.

    Article  CAS  Google Scholar 

  15. Livingston K.E. and Escobar A. (1971): Arch. Neurol.: Anatomical bias of the limbic system concept. A proposal reorientation.24, 17–21.

    CAS  PubMed  Google Scholar 

  16. Scheibel A.B. (1980): in Advances in Neurology, Vol. 27. Ed.: Glaser G.H., Penry J.K. and Woodbury D.W. p. 49–61, Raven Press, New York.

    Google Scholar 

  17. Möhler H., Okada T. and Enna S.J. (1978): Brain Res.: Benzodiazepine and neurotransmitter receptor binding in rat brain after chronic administration of diazepam or phenobarbital.156, 391–395.

    Article  PubMed  Google Scholar 

  18. Láznicěk M., Lamka J. and Kvétina J. (1982): Biochem. Pharmacol.: On the interaction of diazepam with human, rat, and mouse plasma proteins and erythrocytes.31, 1455–1458.

    Article  PubMed  Google Scholar 

  19. Gorodischer R., Jusko W.J. and Yaffe J.J. (1975): Clin. Pharmacol. Ther.: Tissue and erythrocyte distribution of digoxin in infants.19, 256–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hariton, C., Jadot, G., Mesdjian, E. et al. Diazepam: Kinetic profiles in various brain areas, plasma and erythrocytes after chronic administration in the rat. European Journal of Drug Metabolism and Pharmacokinetics 10, 105–111 (1985). https://doi.org/10.1007/BF03189703

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03189703

Key-words

Navigation