Skip to main content
Log in

Structural parameters in the microsomal hydrolysis of 3-acyloxy-l, 4-benzodiazepines and the multiplicity of the esterases involved

  • Original Papers
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The biotransformation of several prodrug-type esters of centrally acting 1, 4-benzodiazepines was studied. Their rates of hydrolysis catalyzed by the hepatic microsomal fraction of mice were measured by pH-stat. The heterogeneity of the microsomal esterases was investigated with induction by phenobarbital and with inhibition by DFP. The resulting changes in esterase activity indicated that the phenyl-substituted esters separate from the homogenous sets of oxazepam and lorazepam esters. Regression analysis of the relative hydrolysis rates of the homogenous ester sets revealed a similar dependence on the steric ES′ the polar σ* and hydrophobic ΔR M terms of the acyl moiety. The role of the polar term shows that a nucleophilic attack of the acyl moiety determines the hydrolysis rate. The role of hydrophobicity can be attributed to its interrelation with the steric parameter. The common equations for the aliphatic esters of oxazepam and larazepam suggest the similar nature of the esterases in question and the same catalytic mechanism. Different 3-acetoxy-l, 4-benzodiazepines were also synthetised and their maximal hydrolysis rates were quite different. This excludes the possibility that the deacylation step of the enzymes is rate-determining. Instead, our data suggest that acylation of the microsomal esterases is rate-limiting for the hydrolysis of the aliphatic esters of 3-OH-benzodiazepines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcucci, F., Mussini, E., Airoldi, L., Guaitani, A. and Garattini, S. (1972): Brain concentrations of lorazepam and oxazepam at equal degree of anticonvulsant activity. J. Pharm. Pharmac.24. 63–64.

    CAS  Google Scholar 

  2. Lescovelli, M., Castellani, A. and Pertellini, D. (1976): A double-blind cross-over evaluation of the activity of D-oxazepam hemisuccinate sodium salt compared to its racemic form. Arzneim. -Forsch.26, 1623–1626.

    CAS  Google Scholar 

  3. Maksay, G., Tegyey, Z. and Ötvös, L. (1978): Stereospecificity of esterases hydrolyzing oxazepam acetate. J. Pharm. Sei.,67, 1208–1210.

    Article  CAS  Google Scholar 

  4. Walkenstein, S.S., Wiser, R., Gudmundsen, C.H., Kimmel, H.B. and Corradino, R.A. (1964): Absorption, metabolism and excretion of oxazepam and its succinate half-ester. J. Pharm. Sei.,53, 1181–1186.

    Article  CAS  Google Scholar 

  5. Sanchez, M.C., Colomé, J. and Gelpi, E. (1976): Electron capture and multiple ion detection of benzodiazepine esters in pharmacokinetic studies.

  6. Maksay, G., Tegyey, Z., Kemény, V., Lukovits, I. and Ötvös, L. (1979): Oxazepam esters. I. Correlation between hydrolysis rates and brain appearance of oxazepam. J. Med. Chem.,22, 1436–1443.

    Article  CAS  PubMed  Google Scholar 

  7. Maksay, G., Tegyey, Z. and Ötvös, L. (1978): Kinetic investigations of liver microsomal esterases with oxazepam esters. Hoppe Seyler’s Z. Physiol. Chem.359, 879–886.

    CAS  PubMed  Google Scholar 

  8. Bell, S.C. and Childress, S.J. (1962): A rearrangement of 5-aryl-l, 3-dihydro-2H-l, 4-benzodiazepine-2-one 4-oxides. J. Org. Chem.27, 1691–1695.

    Article  CAS  Google Scholar 

  9. Ditterbrandt, M. (1948): Application of the weichelbaum biuret reagent to the determination of spinal-fluid protein. Am. J. Clin. Pathol.18, 439–441.

    CAS  Google Scholar 

  10. Maksay, G., Tegyey, Z. and Ötvös, L. (1979): Structure-RM investigation of 3-acyloxi-1,4-benzodiazepines. J. Chromatogr.174, 447–450.

    Article  CAS  Google Scholar 

  11. Hansch, C., Muir, R.M. Fujita, T., Maloney, P.P., Geiger, F. and Streich, M. (1963): The correlation of biological activity of plant growth regulators and Chloromycetin derivatives with Hammet constants and partition coefficients. J. Amer. Chem. Soc.85, 2817- 2824.

    Article  CAS  Google Scholar 

  12. Hansch, C., Lien, E.J. and Helmer, F. (1968): Structure-activity correlation in the metabolism of drugs. Arch. Biochem. Biophys.128, 319–330.

    Article  CAS  PubMed  Google Scholar 

  13. Taft, R.W. (1956): Separation of polar, steric and resonance effects. In: Steric Effects in Organic Chemistry, ed. M.S. Newman, John Wiley and Sons, Inc., New York, pp. 556–675.

    Google Scholar 

  14. Charton, M. (1977): The prediction of chemical lability trough substituent effects. In: Des. Biopharm. Prop. Prodrugs Analogs (Symp.), ed. E.B. Roche, Am. Pharm. Assoc., Washington, D.C., pp. 228–280.

    Google Scholar 

  15. Mendoza, C.E. and Hatina, G.V. (1971): Comparative starch -gel electrophoresis of liver esterases from seven species. Comp. Biochem. Physiol.39 B, 483–488.

    CAS  Google Scholar 

  16. Carruthers, C., Heins, E., Baumler, A. (1965): Fractionation of mouse liver microsomal esterases. Can. J. Biochem.43, 97–104.

    CAS  PubMed  Google Scholar 

  17. Lu, A.Y.H., Levin, W., West, S.B., Jacobson, M., Ryan, D., Kuntzman, R. and Conney, A.H. (1973): Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds and endogenous substrates. VI. Different substrate specificities of the cytochrome P-450 fractions from control and phenobarbital-treated rats.

  18. Fasco, M.J., Piper, L.J. and Kaminsky, L.S. (1979): Cumene hydroperoxide-supported microsomal hydroxilations of warfarin.- A probe of Cytochrom P-450 multiplicity and specificity. Biochem. Pharmacol.28, 97–103.

    Article  CAS  PubMed  Google Scholar 

  19. Raftell, M., Berzins, K. and Blomberg, F. (1977): Immunochemical studies on a phenobarbital-inducible esterase in rat liver microsomes. Arch. Biochem. Biophys.181, 534–541.

    Article  CAS  PubMed  Google Scholar 

  20. Lundkvist, V. and Perlmann, P. (1966): Immunochemical studies of submicrosomal membrames from liver of normal and phenobarbital-treated rats. Science,152, 780–782.

    Article  CAS  PubMed  Google Scholar 

  21. Al-Gailany, K.A.S., Houston, J.B. and Bridges, J.W. (1978): The role of substrate lipophilicity in determining type I microsomal P-450 binding characteristics. Biochem. Pharmacol.27, 783–2788.

    Article  CAS  PubMed  Google Scholar 

  22. Kirsch, J.F. (1972): Linear free energy relationships in enzymology. In: Advances in Linear Free Energy Relationships, ed. N.B. Chapman and J. Shorter, Plenum Press, London, New York, pp. 369–400.

    Google Scholar 

  23. Craig, P.N. (1971): Interdependence between physical parameters and selection of substituent groups for correlation studies. J. Med. Chem.14, 680–684.

    Article  CAS  PubMed  Google Scholar 

  24. Jencks, W.P. (1969): Catalysis in Chemistry and Enzymology, Mc. Graw-Hill, New York, p. 52.

    Google Scholar 

  25. Kristofferson, J., Svensson, L. A. and Tegner, K. (1974): Drug latentiation of terbutaline. In vitro serum esterase catalyzed hydrolysis of a series of acyl-substituted mono and diesters of terbutaline. Acta Pharm. Suecica11, 427–438.

    Google Scholar 

  26. Testa, B. (1978): QSAR in drug metabolism and disposition. An application to the affinity for cytochrome P-450 and hepatic clearance of barbiturates. Pharm. Acta Helv.53, 143–146.

    CAS  Google Scholar 

  27. Schwandt, H.J., Sadée, W., Beyer, K.H. and Hildebrant, A.G. (1976): Effects of enzyme induction and inhibition on microsomal oxidation of 1, 4-benzodiazepines. Naunyn Schmiedeberg’s Arch. Pharmacol294 91–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksay, G., Tegyey, Z., Simon-Trompler, E. et al. Structural parameters in the microsomal hydrolysis of 3-acyloxy-l, 4-benzodiazepines and the multiplicity of the esterases involved. European Journal of Drug Metabolism and Pharmacokinetics 5, 193–200 (1980). https://doi.org/10.1007/BF03189464

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03189464

Key words

Navigation