Skip to main content

Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers

Abstract

It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

This is a preview of subscription content, access via your institution.

References

  1. Zheng, X., Fu, C., Xu, X., Yan, X., Huang, Y., Han, S., Hu, F., Chen, G., The Asian Nitrogen Cycle case study, Ambio, 2002, 31: 79–87.

    PubMed  Google Scholar 

  2. Conway, G., The Doubly Green Revolution, London: Penguin Books, 1997.

    Google Scholar 

  3. Schneider, A., A new factor in economic agriculture, Univ. of Illinois, Agricultural Experiment Station Bulletin, 1893, 29: 301–319.

    Google Scholar 

  4. Borlaug, N. E., The Green Revolution: Peace and Humanity (No-bel Peace Prize: CIMMYT, Mexico DF), 1970.

  5. Hardy, R. W. F., Havelka, U. D., Nitrogen fixation research: A key to world food, Science, 1975, 188: 633–643.

    Article  CAS  PubMed  Google Scholar 

  6. Kennedy, J. R., Cocking, E. C., Biological nitrogen fixation: The global challenge and future needs, Position paper, the Rockefeller Foundation Bellagio Conference Center, 1997, ISBN: 1-86451-364-7.

  7. Brewin, N. J., Tissue and cell invasion byRhizobium: The structure and development of infection threads and symbiosomes, in TheRhizobiaceae, Molecular Biology of Model-plant Associated Bacteria (eds. Spaink, H. P., Kondorosii, A. K., Hooykas, P. J. J.), Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998, 417–429.

    Google Scholar 

  8. Werner, D., Symbiosis of Plants and Microbes, London: Chapman and Hall, 1992, 389.

    Google Scholar 

  9. Johansson, C., Bergman, B., Reconstruction of the symbiosis ofGunnera manicata Linden: Cyanobacterial specificity, New Phytol., 1994, 126: 643–652.

    Article  Google Scholar 

  10. Mylona, P., Pawlowski, K., Bisseling, T., Symbiotic nitrogen fixation, The Plant Cell, 1995, 7: 869–885.

    Article  CAS  PubMed  Google Scholar 

  11. Ray, P. M., Steeves, T. A., Fultz, S. A., Botany, Philadelphia and Madrid: Saunders College Publishing, 1983.

    Google Scholar 

  12. Cocking, E. C., Helping plants get more nitrogen from the air, European Rev., 2000, 8: 193–200.

    Google Scholar 

  13. Mann, C. C., Crop scientists seek a new revolution, Science, 1999, 283: 310–314.

    Article  CAS  Google Scholar 

  14. Giller, K. E., Merckx, R., Exploring the boundaries of N2-fixation in cereals and grasses: A hypothetical and experimental framework, Symbiosis, 2003, 35: 30–17.

    Google Scholar 

  15. Ladha, J. K., Reddy, P. M. (eds.), The Quest for Nitrogen Fixation in Rice, Proceeding of the Third Working Group Meeting on Assessing Opportunities for Nitrogen Fixation in Rice, Los Baños: International Rice Research Institute, 2000, 334pp.

  16. O’Callaghan, K. J., Davey, M. R., Cocking, E. C., Xylem colonization of the legumeSesbania rostrata byAzorhizobium caulinodans, Proc. Roy. Soc. Lond. Ser. B, 1997, 264: 1821–1826.

    Article  Google Scholar 

  17. Ladha, J. K., Reddy, P. M., Extension of nitrogen fixation to ricenecessities and possibilities, Geo Journal, 1995, 35: 363–372.

    Google Scholar 

  18. Stone, P. J., O’Callaghan, K. G., Davey, M. R., Cocking, E. C.,Azorhizobium caulinodaus ORS571 colonizes the xylem of Arabi-dopsis thalina, Mol. Plant-microb. Interact., 2001, 14: 93–97.

    Article  CAS  Google Scholar 

  19. Cavalcante, V. A., Döbereiner, J., A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane, Plant and Soil, 1988, 108: 23–31.

    Article  Google Scholar 

  20. Dong, Z., Zelmer, C. D., Canny, M. J., McCully, M. E., Luit, B., Pan, B., Faustino, R. S., Pierce, G. N., Vessey, J. K., Evidence for protection of nitrogenase from O2 by colony structure in the aerobic diazotroph,Glucon acetobacter diazotrophicus, Microbiology, 2002, 148: 2293–2298.

    CAS  PubMed  Google Scholar 

  21. Boddey, R. M., Urquiaga, S., Alves, B. R., Reis, V., Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications, Plant and Soil, 2003, 252: 139–149.

    Article  CAS  Google Scholar 

  22. Sevilla, M., Burris, R. H., Gunapala, N., Kennedy, C., Comparison of benefit to sugarcane plant growth and15N2 incorporation following inoculation of sterile plants withAcetobacter diazotrophicus wild-type and Nifmutant strains, Mol. Plant-microb. Interact., 2001, 14: 358–366.

    Article  CAS  Google Scholar 

  23. James, E. K., Reis, V. M., Olivares, F. L., Baldini, J. I., Döbereiner, J., Infection of sugarcane by the nitrogen-fixing bacteriumAcetobacter diazotrophicus, J. Exp. Bot., 1994, 45: 757–766.

    Article  CAS  Google Scholar 

  24. Sevilla, M., Kennedy, C., Genetic analysis of nitrogen fixation and plant-growth stimulating properties ofAcebobacter Diazotrophicus, An Endophyte of Sugarcane in Prokaryotic Nitrogen Fixation: A Model System for Analysis of A Biological Process (ed. Triplett, E. W.), Horizon Scientific Press, 2000, 737–760.

  25. Endre, G., Keraszt, A., Kevei, Z., Mihacea, S., Kaló, P., Kiss, G. B., A receptor kinase gene regulating symbiotic nodule development, Nature, 2002, 417: 962–966.

    Article  CAS  PubMed  Google Scholar 

  26. Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stourgaard, J., Szczyglowski, K., Parniske, M., A plant receptor-like kinase required for both bacterial and fungal symbiosis, Nature, 2002, 417: 959–962.

    Article  CAS  PubMed  Google Scholar 

  27. Davey, M. R., Cocking, E. C., Tissue and Cell Cultures and Bacterial Nitrogen Fixation in Recent Advances in Biological Nitrogen Fixation (ed. Subba Rao, N. S.), London: Edward Arnold, 1980, 281–324.

    Google Scholar 

  28. Cocking, E. C., Uptake of foreign genetic material by plant protoplasts, International Review of Cytology, 1977, 48: 323–343.

    Article  CAS  PubMed  Google Scholar 

  29. Goddard, P., Srinivasan, M., Girard, M. L., What can be learnt from the current use of inoculants in legume production? The relative merits of mineral fertilizers and N-inoculants, Symbiosis, 2003, 35: 129–145.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Cocking.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cocking, E.C., Stone, P.J. & Davey, M.R. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers. Sci. China Ser. C.-Life Sci. 48, 888–896 (2005). https://doi.org/10.1007/BF03187127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187127

Keywords

  • cereals
  • endosymbiotic nitrogen fixation
  • Gluconacetobacter diazotrophicus
  • intracellular colonization
  • legumes
  • synthetic nitrogen fertilizers