Science in China Series C: Life Sciences

, Volume 48, Supplement 2, pp 767–779 | Cite as

Surface N balances and reactive N loss to the environment from global intensive agricultural production systems for the period 1970–2030

  • A. F. Bouwman
  • G. Van Drecht
  • K. W. van der Hoek
Article

Abstract

Data for the historical years 1970 and 1995 and the FAO-Agriculture Towards 2030 projection are used to calculate N inputs (N fertilizer, animal manure, biological N fixation and atmospheric deposition) and the N export from the field in harvested crops and grass and grass consumption by grazing animals. In most industrialized countries we see a gradual increase of the overall N recovery of the intensive agricultural production systems over the whole 1970–2030 period. In contrast, low N input systems in many developing countries sustained low crop yields for many years but at the cost of soil fertility by depleting soil nutrient pools. In most developing countries the N recovery will increase in the coming decades by increasing efficiencies of N use in both crop and livestock production systems. The surface balance surplus of N is lost from the agricultural system via different pathways, including NH3 volatilization, denitrification, N2O and NO emissions, and nitrate leaching from the root zone. Global NH3-N emissions from fertilizer and animal manure application and stored manure increased from 18 to 34 Tg·yr−1 between 1970 and 1995, and will further increase to 44 Tg·yr−1 in 2030. Similar developments are seen for N2O-N (2.0 Tg·yr−1 in 1970, 2.7 Tg·yr−1 in 1995 and 3.5 Tg·yr−1 in 2030) and NO-N emissions (1.1 Tg·yr−1 in 1970,1.5 Tg·yr−1 in 1995 and 2.0 Tg·yr−1 in 2030).

Keywords

surface N balances reactive N loss global intensive agricultural system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouwman, A. F., Lee, D. S., Asman, W. A. H. et al., A global high-resolution emission inventory for ammonia, Global Biogeochemical Cycles, 1997, 11: 561–587.CrossRefGoogle Scholar
  2. 2.
    Mosier, A. R., Kroeze, C., Nevison, C. et al., Closing the global atmospheric N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle, Nutrient Cycling in Agroecosystems, 1998, 52: 225–248.CrossRefGoogle Scholar
  3. 3.
    IFA/IFDC/FAO, Fertilizer use by crop. 5th edition, Rome: Food and Agriculture Organization of the United Nations, 2003.Google Scholar
  4. 4.
    Van Drecht, G., Bouwman, A. E., Knoop, J. M. et al., Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater and surface water, Global Biogeochemical Cycles, 2003, 17(4): 1115.CrossRefGoogle Scholar
  5. 5.
    Galloway, J. N., Schlesinger, W. H., Levy_III, H. et al., Nitrogen fixation: Anthropogenic enhancement-environmental response, Global Biogeochemical Cycles, 1995, 9: 235–252.CrossRefGoogle Scholar
  6. 6.
    Nakicenovic, N., Alcamo, J., Davis, G. et al., Special Report on emissions scenarios, in IPCC Special Reports, Cambridge: Cambridge University Press, 2000, 599.Google Scholar
  7. 7.
    Peoples, M. B., Freney, J. R., Mosier, A. R., Minimizing gaseous losses of nitrogen, in Nitrogen fertilization and the environment (ed. Bacon, P. E.), New York: Marcel Dekker Inc., 1995, 565–602.Google Scholar
  8. 8.
    FAO/IFA, Global Estimates of Gaseous Emissions of NH3, NO and N2O from Agricultural Land, Rome: Food and Agriculture Organization of the United Nations (FAO)/International Fertilizer Industry Association (IFA), 2001, 106.Google Scholar
  9. 9.
    Van Breemen, N., Burrough, P. A., Velthorst, E. J. et al., Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall, Nature, 1982, 299: 548–550.CrossRefGoogle Scholar
  10. 10.
    Bouwman, A. F., Van Vuuren, D. P., Derwent, R. G. et al., A global analysis of acidification and eutrophication of terrestrial ecosystems, Water, Air and Soil Pollution, 2002, 141: 349–382.CrossRefGoogle Scholar
  11. 11.
    IPCC, Third assessment report, Working Group I, Cambridge: Cambridge University Press, 2001.Google Scholar
  12. 12.
    Johnes, P. J., Burt, T. P., Nitrate in surface waters, in Nitrate: Processes, Patterns and Management (eds. Burt, T. P., Trudgill, S. T.), Chichester: Wiley and Sons, 1993, 269–317.Google Scholar
  13. 13.
    Heathwaite, A. L., Nitrogen cycling in surface waters and lakes, in Nitrate: Processes, Patterns and Management (eds. Burt, T. P., Trudgill, S. T.), Chichester: Wiley and Sons, 1993, 99–140.Google Scholar
  14. 14.
    Vollenweider, R. A., Coastal marine eutrophication: Principles and control, Science of the Total Environment, 1992, Supplement 1992: 1–20.Google Scholar
  15. 15.
    Bouwman, A. F., Van Drecht, G. Van der Hoek, K. W., Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030, Pedosphere, 2005, 15(2): 137–155.Google Scholar
  16. 16.
    Van der Hoek, K. W. Nitrogen cycling in Asian pastoral livestock production systems: Present and future, Proceedings of the N2004 Conference, Nanjing, 2004.Google Scholar
  17. 17.
    Bruinsma, J. E., World agriculture: Towards 2015/2030. An FAO perspective, London: Earthscan, 2003, 432.Google Scholar
  18. 18.
    Bouwman, A. F., Van der Hoek, K. W., Eickhout, B. et al., Exploring changes in world ruminant production systems, Agricultural Systems, 2005, 84(2): 121–153.CrossRefGoogle Scholar
  19. 19.
    IMAGE-team, The IMAGE 2.2 Implementation of the SRES Scenarios. A Comprehensive Analysis of Emissions, Climate Change and Impacts in the 21st Century, CD-ROM Publication 481508018, Bilthoven: National Institute for Public Health and the Environment, 2001.Google Scholar
  20. 20.
    FAO, FAOSTAT database collections, http://www.apps.fao.org, Rome: Food and Agriculture Organization of the United Nations, 2001.Google Scholar
  21. 21.
    Van der Hoek, K. W., Nitrogen efficiency in global animal production, in Nitrogen, the Confer-N-s (eds. Van der Hoek, K. W., Erisman, J. W., Smeulders, S. et al.), Amsterdam: Elsevier, 1998, 127–132.Google Scholar
  22. 22.
    Smil, V., Nitrogen in crop production: An account of global flows, Global Biogeochemical Cycles, 1999, 13: 647–662.CrossRefGoogle Scholar
  23. 23.
    Collins, W. J., Stevenson, D. S., Johnson, C. E. et al., Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls, Journal of Atmospheric Chemistry, 1997, 26: 223–274.CrossRefGoogle Scholar
  24. 24.
    Olivier, J. G. J., Berdowski, J. M., Peters, J. A. H. W. et al., Applications of EDGAR. Including a description of EDGAR V3.0: Reference database with trend data for 1970–1995., Report 773301001, Bilthoven: National Institute for Public Health and the Environment (RIVM)/Netherlands Organization for Applied Scientific Research (TNO), 2001.Google Scholar
  25. 25.
    OECD, Environmental indicators for agriculture. Volume 3. Methods and results, Paris: Organization for Economic Co-operation and Development, 2001.Google Scholar
  26. 26.
    Bouwman, A. F., Boumans, L. J. M., Batjes, N. H., Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands, Global Biogeochemical Cycles, 2002, 16(2): 1024.CrossRefGoogle Scholar
  27. 27.
    Bouwman, A. F., Boumans, L. J. M., Batjes, N. H., Modeling global annual N2O and NO emissions from fertilized fields, Global Biogeochemical Cycles, 2002, 16(4): 1080.CrossRefGoogle Scholar
  28. 28.
    IPCC, Guidelines for national greenhouse gas inventories, Paris: Intergovernmental panel on Climate Change/Organization for Economic Cooperation and Development, 1997.Google Scholar
  29. 29.
    Veldkamp, E., Keller, M., Fertilizer-induced nitric oxide emissions from agricultural soils, Nutrient Cycling in Agroecosystems, 1997, 48: 69–77.CrossRefGoogle Scholar
  30. 30.
    Davidson, E. A., Kingerlee, W., A global inventory of nitric oxide emissions from soils, Nutrient Cycling in Agroecosystems, 1997, 48: 37–50.CrossRefGoogle Scholar
  31. 31.
    Van Egmond, K., Bresser, T. Bouwman, L., The European nitrogen case, Ambio, 2002, 31: 72–78.PubMedGoogle Scholar
  32. 32.
    Bleken, M. A., Bakken, L. R., The nitrogen cost of food production: Norwegian society, Ambio, 1997, 26: 134–142.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • A. F. Bouwman
    • 1
  • G. Van Drecht
    • 1
  • K. W. van der Hoek
    • 2
  1. 1.Netherlands Environmental Assessment AgencyNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
  2. 2.Laboratory for Environmental MonitoringNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands

Personalised recommendations