Skip to main content
Log in

Analysis of part of theTrichophyton rubrum ESTs

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Trichophyton rubrum (T. rubrum) is the most common of the superficial fungi. In an effort to better understand the genetic and biochemical makeup ofT. rubrum, we generated cDNA libraries from 3 growth stages and used these to isolate 4002 unique expressed sequence tags (ESTs). Sequence comparisons with the Genbank database allowed 1226 of the ESTs to be assigned putative functions or matched with homologs from other organisms. Of the remaining ESTs, 989 were only weakly similar to known sequences and 1787 had no identifiable functions, suggesting that they represent novel genes. We further analyzed the presence of several important genes involved in the growth, metabolism, signal transduction, pathogenesis and drug resistance inT. rubrum. This information was used to newly elucidate important metabolic pathways inT. rubrum. Taken together, our results should form the molecular basis for continued research on the physiological processes and pathogenic mechanisms ofT. rubrum, and may lead to a better understanding of fungal drug resistance and identification of new drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fontaine, T., Magnin, T., Melhert, A. et al., Structures of the glycosylphosphatidylinositol membrane anchors fromAspergillus fumigatus membrane proteins, Glycobiology, 2003, 13(3): 169–177.

    Article  CAS  PubMed  Google Scholar 

  2. Kitagaki, H., Wu, H., Shimoi, H., Ito, K., Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis inSaccharomyces cerevisiae, Mol. Microbiol., 2002, 46(4): 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  3. Richard, M., De Groot, P., Courtin, O. et al., GPI7 affects cell-wall protein anchorage inSaccharomyces cerevisiae andCandida albicans, Microbiology, 2002, 148(Pt 7): 2125–2133.

    CAS  PubMed  Google Scholar 

  4. Clemons, K. V., Miller, T. K., Selitrennikoff, C. P. et al., fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis, Med. Mycol., 2002, 40(3): 259–262.

    Article  CAS  PubMed  Google Scholar 

  5. Pott, G. B., Miller, T. K., Bartlett, J. A. et al., The isolation of FOS-1, a gene encoding a putative two-component histidine kinase fromAspergillus fumigatus, Fungal Genet. Biol., 2000, 31(1): 55–67.

    Article  CAS  PubMed  Google Scholar 

  6. Selitrennikoff, C. P., Alex, L., Miller, T. K. et al., COS1, a putative two-component histidine kinase of Candida albicans, is an vivo virulence factor, Med. Mycol., 2001, 39(1): 69–74.

    CAS  PubMed  Google Scholar 

  7. Torosantucci, A., Chiani, P., De Bernardis, F. et al., Deletion of the two-component histidine kinase gene (CHK1) of Candida albicans contributes to enhanced growth inhibition and killing by human neutrophilsin vitro, Infect. Immun., 2002, 70(2): 985–987.

    Article  CAS  PubMed  Google Scholar 

  8. Samdani, A. J., Dykes, P. J., Marks, R., The proteolytic activity of strains ofT. mentagrophytes andT. rubrum isolated from tinea pedis and tinea unguium infections, J. Med. Vet. Mycol., 1995, 33(3): 167–170.

    Article  CAS  PubMed  Google Scholar 

  9. Apodaca, G., McKerrow, J. H., Expression of proteolytic activity by cultures ofTrichrophyton rubrum, J. Med. Vet. Mycol., 1990, 28: 159–171.

    Article  CAS  PubMed  Google Scholar 

  10. Apodaca, G., McKerrow, J. H., Regulation ofTrichophyton rubrum proteolytic activity, Infect. Immun., 1989, 57(10): 3081–3090.

    CAS  PubMed  Google Scholar 

  11. Asahi, M., Lindquist, R., Fukuyama, K. et al., Purification and characterization of major extracellular proteinases from Trichophyton rubrum, Biochem. J., 1985, 232(1): 139–144.

    CAS  PubMed  Google Scholar 

  12. Parkinson, T., Falconer, D. J., Hitchcock, C. A., Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata, Antimicrob. Agent Chemother, 1995, 39(8): 1696–1699.

    CAS  Google Scholar 

  13. Denning, D. W., Venkateswarlu, K., Oakley, K. L. et al., Itra-conazole resistance inAspergillus fumigatus, Antimicrob. Agent Chemother, 1997, 41(6): 1364–1368.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Jin.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Ma, L., Leng, W. et al. Analysis of part of theTrichophyton rubrum ESTs. Sci. China Ser. C.-Life Sci. 47, 389–395 (2004). https://doi.org/10.1007/BF03187096

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03187096

Keywords

Navigation