Skip to main content
Log in

Growth and applications of HVPE-GaN nanorods

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We demonstrate the properties of gallium nitride nanorods by hydride vapor phase epitaxy (HVPE). Single crystalline gallium nitride nanorods are formed on a sapphire substrate by HVPE. Single crystalline p-type and n-type gallium nitride nanorods have been grown and characterized by electrical transport measurements. HVPE was used to controllably introduce either magnesium or silicon dopants during the growth of the gallium nitride nanorods. The electron emission properties of gallium nitride nanorod array electron emitters were comparable with (or displayed even lower turn-on voltage than) those of carbon nanotubes. Wide-bandgap current rectifiers with high breakdown voltage (over −10 V) and near-ultraviolet p-n junction LEDs with emission wavelength of 390 nm, based on the single-rod gallium nitride p-n junction array, were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, S. J. Pearton, and G. Fasol,The Blue Laser Diode: The Complete Story 7–9, Springer-Verlag, Berlin (2000).

    Google Scholar 

  2. J. H. Choi, S. J. Lim, M. S. Cho, N. H. Cho, S. J. Chung, and C. S. Sohn,Met. Mater.-Int. 9, 77 (2003).

    Article  CAS  Google Scholar 

  3. S. J. Pearton and F. Ren,Adv. Mater. 12, 1571 (2000).

    Article  CAS  Google Scholar 

  4. W. Han, S. Fan, Q. Li, and Y. Hu,Science 277, 1287 (1997).

    Article  CAS  Google Scholar 

  5. W. Han, P. Redlich, F. Ernst, and M. Ruhle,Appl. Phys. Lett. 76, 652 (2000).

    Article  ADS  CAS  Google Scholar 

  6. C. C. Chen and C. C. Yeh,Adv. Mater. 12, 738 (2000).

    Article  CAS  Google Scholar 

  7. J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan,J. Cryst. Growth 213, 408 (2000).

    Article  ADS  CAS  Google Scholar 

  8. G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, and L. Li,Appl. Phys. Lett. 75, 2455 (1999).

    Article  ADS  CAS  Google Scholar 

  9. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino,Jpn. J. Appl. Phys. 36, L459 (1997).

    Article  ADS  CAS  Google Scholar 

  10. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber,Nature 409, 66 (2001).

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Y. Huang, X. Duan, Y. Cui, and C. M. Lieber,Nano Lett. 2, 101 (2002).

    Article  ADS  CAS  Google Scholar 

  12. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber,Nature 415, 617 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  13. H.-M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung,Adv. Mater. 14, 991 (2002).

    CAS  Google Scholar 

  14. H.-M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y. H. Cho, and K. S. Chung,Appl. Phys. Lett. 81, 2193 (2002).

    Article  ADS  CAS  Google Scholar 

  15. H.-M. Kim, T. W. Kang, K. S. Chung, J. P. Hong, and W. B. Choi,Chem. Phys. Lett. 377, 491 (2003).

    Article  ADS  CAS  Google Scholar 

  16. W. A. De Heer, A. Chatelain, and D. Ugarte,Science 270, 1179 (1995).

    Article  ADS  Google Scholar 

  17. Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss,Appl. Phys. Lett. 70, 3308 (1997).

    Article  ADS  CAS  Google Scholar 

  18. P. G. Collins and A. Zettl,Phys. Rev. B 55, 9391 (1997).

    Article  ADS  CAS  Google Scholar 

  19. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai,Science 283, 512 (1999).

    Article  PubMed  ADS  CAS  Google Scholar 

  20. X. P. Xu and G. R. Brandes,Appl. Phys. Lett. 74, 2549 (1999).

    Article  ADS  CAS  Google Scholar 

  21. J. I. Pankov and T. D. Moustakas,Gallium Nitride (GaN) I: Semiconductor and Semimetals 50, p. 259, Academic Press, San Diego, CA, USA (1998).

    Google Scholar 

  22. Y. Cui, X. Duan, J. Hu, and C. M. Lieber,J. Phys. Chem. B 104, 5213 (2000).

    Article  CAS  Google Scholar 

  23. H.-M. Kim, T. W. Kang, and K. S. Chung,Adv. Mater. 15, 567 (2003).

    Article  CAS  Google Scholar 

  24. H.-M. Kim, Y.-H. Cho, and T. W. Kang,Adv. Mater. 15, 232 (2003).

    Article  CAS  Google Scholar 

  25. N. Grandjean, J. Massies, M. Leroux, and P. Lorenzini,Appl. Phys. Lett. 72, 82 (1998).

    Article  ADS  CAS  Google Scholar 

  26. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris,Nano Lett. 1, 453 (2001).

    Article  ADS  CAS  Google Scholar 

  27. C. W. Zhou, J. Kong, E. Yenilmez, and H. J. Dai,Science 290, 1552 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  28. J. Hu, M. Ouyang, P. Yang, and C. M. Lieber,Nature 399, 48 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Mok Kim.

Additional information

This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, T.W., Kim, HM. Growth and applications of HVPE-GaN nanorods. Met. Mater. Int. 10, 367–373 (2004). https://doi.org/10.1007/BF03185987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185987

Keywords

Navigation