Three-dimensional solution structure of ω-conotoxin SO3 determined by1H NMR

Abstract

Cone snails (Conus) elaborate a series of conotoxin (CTX) peptides in their venoms to paralyze their prey. Among these toxins, ω-CTX’s specifically target to presynaptic voltage-gated calcium channel subsets, causing inhibition of neurotransmitter release. ε-CTX SO3 was isolated from the venom ofConus striatus, which is the only available fish-hunting snail near the coast of the South China Sea. The three-dimensional solution structure of ω-CTX SO3, a peptide which is the only ω-conotoxin reported to show high homology with another ω-CTX (MVIIA fromC. Magus), has been determined by1H NMR techniques. The molecular structure of ω-CTX SO3 is stabilized by three disulfide bridges and a short triple-stranded antiparallel β-sheet with four turns. A comprehensive comparison suggested that the backbone conformation of ω-CTX’s was quite conserved, while the length of β-sheet and the type of some turns might have minor differences.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adams, M. E., Olivera, B. M., Neurotoxins—overview of an emerging research technology, Trends Neurosci., 1994, 17(4): 151–155.

    Article  Google Scholar 

  2. 2.

    Olivera, B. M., McIntosh, J. M., Cruz, L. J. et al., Purification and sequence of a presynaptic peptide toxin from Conus geographus venom, Biochem., 1984, 23: 5087–5090.

    Article  Google Scholar 

  3. 3.

    Olivera, B. M., Milijanich, G. P., Ramachandran, J. et al., Calcium channel diversity and neurotransimitter release: the ω-conotoxins and ω-agatoxins, Annu. Rev. Biochem., 1994, 63: 823–867.

    Article  Google Scholar 

  4. 4.

    Lu, B. S., Yu, F., Zhao, D. et al., Conopeptides from conus striatus and conus textile by cDNA cloning, Peptides, 1999, 20(10): 1139–1144.

    Article  Google Scholar 

  5. 5.

    Kohno, T., Kim, J., Kobayashi, K. et al., Three-dimensional structure in solution of the calcium channel blocker ω-conotoxin MVIIA, Biochem., 1995, 34(32): 10256–10265

    Article  Google Scholar 

  6. 6.

    Basus, V. J., Nadasdi, L., Ramachandran, J. et al., Solution structure of ω-conotoxin MVIIA using 2D NMR spectroscopy, FEBS Letters, 1995, 370(3): 163–169

    Article  Google Scholar 

  7. 7.

    Davis, J. H., Bradley, E. K., Miljanich, G. P. et al., Solution structure of ω-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis, Biochem., 1993, 32(29): 7396–7402.

    Article  Google Scholar 

  8. 8.

    Sevilla, P., Bruix, M., Santoro, J. et al., Three dimensional structure of ω-conotoxin GVIA determined by1H NMR, Biochem.Biophys. Res. Commun., 1993, 192(3): 1228–1244.

    Article  Google Scholar 

  9. 9.

    Fair-Jones, S., Miljanich, G. P., Nadasdi, L. et al., Solution structure of ω-conotoxin MVIIC, a high affinity ligand of P-type calcium channels, using1H NMR spectroscopy and complete relaxation matrix analysis, J. Mol. Biol., 1996, 448(1): 106–124.

    Google Scholar 

  10. 10.

    Nemoto, N., Kubo, S., Yoshida, T. et al., Solution structure of ω-conotoxin MVIIC determined by NMR, Biochem. Biophys. Res. Commun., 1995, 207(2): 695–700.

    Article  Google Scholar 

  11. 11.

    Civera, C., Vázquez, A., Sevilla, J. M. et al., Solution structure determination by two-dimensional1HNMR of ω-conotoxin MVIID, a calcium channel blocker peptide, Biochem. Biophy. Res. Commun., 1999, 254(1): 32–35.

    Article  Google Scholar 

  12. 12.

    Nielsen, K. J., Thomas, L., Lewis, R. J. et al., A consensus structure for ω-conotoxin with different selectivities for voltage-sensitive calcium channel subtypes—comparision of MVIIA, SVIB and SNX-202, J. Mol. Biol., 1996, 263(2): 297–310.

    Article  Google Scholar 

  13. 13.

    Kobayashi, K., Sasaki, T., Sato, K. et al., Three-dimensional solution structure of ω-conotoxin TxVII, an L-type calcium channel blocker, Biochem., 2000, 39(48): 14761–14767.

    Article  Google Scholar 

  14. 14.

    Yan, Y. B., Luo, X. C., Zhou, H. M. et al., Two-state kinetics characterized by image analysis of nuclear magnetic resonance spectra, Chinese Sci. Bull., 2002, 47(5): 389–393.

    Article  Google Scholar 

  15. 15.

    Zhou, Y. R., Liu, F. Y., Dai, Q. Y. et al., Optimization of synthetic and folding conditions of a novel w-conotoxin peptide SO3, Lett. Biotechnol. (in Chinese), 2002, 13(4): 286–288.

    Google Scholar 

  16. 16.

    Wuthrich, K., NMR of Proteins and Nucleic Acids, New York: John Wiley & Sons, 1986.

    Google Scholar 

  17. 17.

    Wüthrich, K., Billeter, M., Braun, W., Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance, J. Mol. Biol., 1983, 169: 949–961.

    Article  Google Scholar 

  18. 18.

    Pardi, A., Billeter, M., Wüthrich, K., Calibration of the angular dependence of amide proton-C-alpha proton coupling constants,3Jhnα in a globular protein—Use3Jhnα for identification of helical secondary structure, J. Mol. Biol., 1984, 180: 741–751.

    Article  Google Scholar 

  19. 19.

    Güntert, P., Braun, W., Wüthrich, K., Efficient computation of three-dimensional protein structures in solution form nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA, J. Mol. Biol., 1991, 217: 517–530.

    Article  Google Scholar 

  20. 20.

    Hewage, C. M., Jiang, L., Parkinson, J. A. et al., Solution structure of a novel ETB receptor selective agonist ET1-21 [Cys(Acm)1,15, Aib3,11, Leu7] by nuclear magnetic resonance spectroscopy and molecular modeling, J. Peptide Res., 1999, 53(3): 223–233.

    Article  Google Scholar 

  21. 21.

    Richardson, J. S., The anatomy and taxonomy of protein structure, Adv. Protein Chem., 1981, 34: 167–339.

    Article  Google Scholar 

  22. 22.

    Wilmot, C. M., Thornton, J. M., β-turns and their distortions: a proposed new nomenclature, Protein Eng., 1990, 3: 479–493.

    Article  Google Scholar 

  23. 23.

    Sibanda, B. L., Blundell, T. L., Thornton, J. M., Conformation of b-hairpins in protein structures: a systematic classification with applications to modelling by homology, electron density fitting and protein engineering, J. Mol. Biol., 1989, 206: 759–777.

    Article  Google Scholar 

  24. 24.

    Flinn, J. P., Pallaghy, P. K., Lew, M. J. et al., Role of disulfide bridges in the folding, structure and biological activity of wconotoxin GVIA, Biochimica et Biophysica ACTA, 1999, 1434(1): 177–190.

    Google Scholar 

  25. 25.

    Li, Z., He, X. P., Xie, Z. P. et al., Effect of new O-superfamily conotoxin SO3 on sodium and potassium currents of cultured hippocampal neurons, Brain Research, 2003, 965: 155–158.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongbin Yan.

Additional information

Atomic coordinates for the 11 converged structures of ω-conotoxin SO3 have been deposited with the Protein Data Bank, Brookhaven National Laboratories, Long Island, NY 11973, under the accession code 1FYG.

About this article

Cite this article

Yan, Y., Tu, G., Luo, X. et al. Three-dimensional solution structure of ω-conotoxin SO3 determined by1H NMR. Chin.Sci.Bull. 48, 1097–1102 (2003). https://doi.org/10.1007/BF03185760

Download citation

Keywords

  • Conus striatus
  • nuclear magnetic resonance
  • neurotoxin
  • solution structure
  • ω-conotoxin SO3