Skip to main content
Log in

Synthesis of heavy and superheavy elements

  • Published:
Il Nuovo Cimento A (1971-1996)

Summary

In two series of experiments at SHIP, six new elements (Z = 107–112) were synthesized via fusion reactions using lead or bismuth targets and 1n-deexcitation channels. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant decay mode. Cross-sections decrease by two orders of magnitude from bohrium (Z = 107) to element 112, for which a cross-section of 1 pb was measured. Based on our results, it is likely that the production of isotopes of element 114 close to the island of sphericalSuperHeavy Elements (SHE) could be achieved by fusion reactions using208Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. The likelihood of broadening the energy window by investigation of radiative capture reactions, use of neutron deficient projectile isotopes and use of actinide targets is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mü nzenberg G. et al., Z. Phys. A,330 (1988) 435–436.

    ADS  Google Scholar 

  2. Münzenberg G. et al., GSI Annual Report 1985, GSI-86–1, 1986, p. 29.

  3. Münzenberg G. et al., GSI Annual Report 1986, GSI-87–1, 1987, p. 14.

  4. Oganessian Yu. Ts. et al., Radiochim. Acta,37 (1984) 113–120.

    Article  Google Scholar 

  5. Schmidt K. H. andMorawek W.,Rep. Prog. Phys.,54 (1991) 949–1003.

    Article  ADS  Google Scholar 

  6. Nix R. andSierk A. J.,Phys. Rev. C,15 (1977) 2072–2082.

    Article  ADS  Google Scholar 

  7. Swiatecki W. J.,Nucl. Phys. A,376 (1982) 275–291.

    Article  ADS  Google Scholar 

  8. Blocki J. et al., Nucl. Phys. A,459 (1986) 145–172.

    Article  ADS  Google Scholar 

  9. Fröbrich P.,Phys. Lett. B,215 (1988) 36–40.

    Article  ADS  Google Scholar 

  10. Berdichevsky D. et al., Nucl. Phys. A,502 (395c) 1989.

    Article  ADS  Google Scholar 

  11. Hofmann S.,J. Alloys Compounds,213/214 (1994) 74–80.

    Article  ADS  Google Scholar 

  12. Hofmann S., to be published inRep. Prog. Phys.,61 (1998).

  13. Hessberger F. P. et al., Z. Phys. A,359 (1997) 415–425.

    Article  ADS  Google Scholar 

  14. Hofmann S. et al., Z. Phys. A,350 (1995) 277–280;350 (1995) 281-282;354 (1996) 229-230;358 (1997) 377-378.

    Article  ADS  Google Scholar 

  15. Ghiorso A. et al., Nucl. Phys. A,583 (1995) 861c-866c.

    Article  ADS  Google Scholar 

  16. Ghiorso A. et al., Phys. Rev. C,51 (1995) R2293-R2297.

    Article  ADS  Google Scholar 

  17. Lazarev Yu. A. et al., Phys. Rev. Lett.,73 (1994) 624–627.

    Article  ADS  Google Scholar 

  18. Lazarev Yu. A. et al., Phys. Rev. Lett.,75 (1995) 1903–1906.

    Article  ADS  Google Scholar 

  19. Lazarev Yu. A. et al., Phys. Rev. C,54 (1996) 620–625.

    Article  ADS  Google Scholar 

  20. Strutinsky V. M.,Nucl. Phys. A,95 (1967) 420–442.

    Article  ADS  Google Scholar 

  21. Liran S. andZeldes N.,At. Data Nucl. Data Tables,17 (1976) 431–441.

    Article  ADS  Google Scholar 

  22. Möller P. et al., At. Data Nucl. Data Tables,59 (1995) 185–381.

    Article  ADS  Google Scholar 

  23. Myers W. D. andSwiatecki W. J.,Nucl. Phys. A,601 (1996) 141–167.

    Article  ADS  Google Scholar 

  24. Smolanczuk R. andSobiczewski A.,Proceedings of the XV Nuclear Physics Divisional Conference on Low Energy Nuclear Dynamics, St. Petersburg, Russia, April 18–22, 1995, edited byOganessian Yu. Ts.,Kalpakchieva R. andvon Oertzen W. (World Scientific, Singapore) 1995, pp. 313–320 and private communication.

  25. ćwiok S. et al., Nucl. Phys. A,573 (1994) 356–394.

    Article  ADS  Google Scholar 

  26. ćwiok S. et al., Nucl. Phys. A,611 (1996) 211–246.

    Article  ADS  Google Scholar 

  27. Rutz K. et al., Phys. Rev. C,56 (1997) 238–243.

    Article  ADS  Google Scholar 

  28. Bass R.,Nucl. Phys. A,231 (1974) 45–63.

    Article  ADS  Google Scholar 

  29. Audi G. andWapstra A.H.,Nucl. Phys. A,565 (1993) 65–157.

    Article  ADS  Google Scholar 

  30. Keller J. G. et al., Z. Phys. A,311 (1983) 243–244.

    Article  ADS  Google Scholar 

  31. Möller P. et al., Z. Phys. A,359 (1997) 251–255.

    Article  ADS  Google Scholar 

  32. Scharnweber D. et al., Z. Phys. A,228 (1971) 257–278.

    Google Scholar 

  33. Antonenko N. V. et al., Phys. Rev. C,51 (1995) 2635–2645.

    Article  ADS  Google Scholar 

  34. Itkis M. G. et al.,this issue, p. 783.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, S. Synthesis of heavy and superheavy elements. Il Nuovo Cimento A (1971-1996) 111, 771–781 (1998). https://doi.org/10.1007/BF03185348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185348

PACS 21.10.Dr

PACS 23.60

PACS 25.70

PACS 27.90

PACS 01.30.Cc

Navigation