Skip to main content
Log in

Planar optical waveguide temperature sensor based on etched bragg gratings considering nonlinear thermo-optic effect

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2 nm and ∼9 %, respectively, at a wavelength of ∼1552 nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200 °C temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132 nm/°C with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archambault, J. L., Reekie, L. and Russel, P. St. J., 1993, “100 % Reflectivity Bragg Reflectors Produced in Optical Fibers by Using Single Excimer Pulses,”Electronics Letters, Vol. 29, pp. 453–454.

    Article  Google Scholar 

  • Chang, C. C., Sagrario, D., Job, L. and Sirkis, J. S., 1994, “Using Standard Interferometric Sensors for High Temperature Strain Measurements,”SPIE Vol. 2191, pp. 482–486.

    Article  Google Scholar 

  • Dils, R. R., 1983,Journal of Applied Physics. 84, 1198.

    Article  Google Scholar 

  • Ergogan, T., Mizrahi, V., Lamaire, P. J. and Monroe, D., 1994, “Decay of Ultraviolet-Induced Fiber Bragg Gratings,”Journal of Applied Physics, Vol. 76, pp. 73–80.

    Article  Google Scholar 

  • Flanders, D. C., Kogelnik, H., Schmidt, R. V. and Shank, C. V., 1974, “Grating Filters for Thin-Film Optical Waveguide,”Applied Physics Letters, Vol. 24, No. 4, pp. 194–196.

    Article  Google Scholar 

  • Harting, R. 1975, “Evaluation of a Capacitive Strain Measuring System for Use to 1500 °C,”ISA 75251, pp. 289–297.

  • Hill, K. O. Fugii, Y., Johnson, D. C. and Kawasaki, B. S., 1978, “Photosensitivity on Optical Fiber Waveguides: Application to Reflection Filter Fabrication,”Applied Physics Letters, Vol. 32, pp. 647–649.

    Article  Google Scholar 

  • Hong, C. S., Shellan, J. B., Livanos, A. C., Yariv, A. and Katzir, A., 1974, “Broad-Band Grating Filters for Thin-Film Optical Waveguide,”Applied Physics Letters, Vol. 31, No. 4, pp. 276–278.

    Article  Google Scholar 

  • Hudson, L. D., 1989, “Recinet Experiences With Elevated-Temperature Foil Strain Gages With Application to Thin-Gage Materials,”Proc. 6th Annual Conf. On Hostile Environments and High Temperature Measurements, Society for Experimental Mechanics, pp. 68–81.

  • Izawa, T., More, H., Murakami, Y. and Shimizu, N., 1981, “Deposited Silica Waveguide for Integrated Optical Circuits,”Applied Physics Letters, Vol. 38, No. 7, pp. 483–485.

    Article  Google Scholar 

  • Kelly, A., 1973,Strong Solids, 2nd Ed. Oxford England: Clarendon.

    Google Scholar 

  • Lee, C. E. and Taylor, H. F., 1991,IEEE Journal of Lightwave Technology, 9, 129.

    Article  Google Scholar 

  • Lee, H. J., Henry, C. H., Kazarinov, R. F. and Orlowsky, K. J., 1987, “Low Loss Bragg Reflectors on SiO2−Si3N4−SiO2 Rib Waveguides,”Applied Optics, Vol. 26, No. 13, pp. 2618–2620.

    Article  Google Scholar 

  • Lei, J. F., Okimura, H. and Brittain, J. O., 1989, “Evaluation of Some Thin Film Transition Metal Compounds for High Temperature Resistance Strain Gauge Application,”Materials Science Engineering, A111, pp. 145–154.

    Article  Google Scholar 

  • Malitson, I. H., 1965, “Interspecimen Comparison of the Refractive Index of Fused Silica,”J. Opt. Soc. America, Vol. 55, No. 10, pp. 1205–1210.

    Article  Google Scholar 

  • Miay, P., Bernage, P., Douay, M., Taunay, T., Sie, W. X., Martinelli, G., Bayon, H. F., Poignant, H. and Devevaque, E., 1995, “Bragg Grating Photoinscription Within Various Types of Fibers and Glasses,”Proceedings of Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, OSA Technical Digest, Vol. 22, pp. 66–69.

    Google Scholar 

  • Moreau, W. M., 1988, Semiconductor Lithography: Principles, Practices, and Materials, New York: Plenum Press, pp. 646–650.

    Google Scholar 

  • Morey, W. W., Meltz, G. and Glenn, W. H., 1989, “Fiber Optic Bragg Grating Sensors,”Fiber Optic and Laser Sensors VII,SPIE Vol. 1169, pp. 98–107.

    Google Scholar 

  • Noltingk, B. E., 1974, “Measuring Static Strains at High Temperatures,”Experimental Mechanics, Vol. 15, No. 10, pp. 420–423.

    Article  Google Scholar 

  • Norris, E. B. and Yeakley, L. M., 1976, “Development of High-Temperature Capacitance Strain Gages,”ISA National Technical Information Service, PB 257, January.

  • Okada, Y., Tokumaru, Y., 1984,J. Applied Physics, Vol. 56, No. 2, pp. 314–320.

    Article  Google Scholar 

  • Petersen, K. E., 1982,Proceedings of IEEE, Vol. 70, pp. 420-???.

    Article  Google Scholar 

  • Poulsen, C. V., 1995, “Thermal Stability of Direct UV-Written Channel Waveguides,”Proceedings of Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, OSA Technical Digest, Vol. 22, pp. 100–103.

    Google Scholar 

  • Schmidt, R. V., Flanders, D. C., Shank, C. V. and Standley, R. D., 1974, “Narrow-Band Grating Filters for Thin-Film Optical Waveguide,”Applied Physics Letters, Vol. 25, No. 11, pp. 651–652.

    Article  Google Scholar 

  • Stange, W. A., 1983, “Advanced Techniques for Measurement of Strain and Temperature in a Turbine Engine,”AIAA/SAE/ASME 19 th Jet Propulsion Conference., Seattle, WA, AIAA-83-1296.

  • Suhara, T. and Nishihara, H., 1986, “Integrated Optics Component and Devices Using Periodic Structures,”IEEE Journal of Quantum Electronics, Vol. 22, No. 6, pp. 845–867.

    Article  Google Scholar 

  • Takahashi, S. and Shibata, S., 1979, “Thermal Variation of Attenuation for Optical Fibers,”Journal of Non-Crystalline Solids, Vol. 30, pp. 359–370.

    Article  Google Scholar 

  • Tsai, T. E., Friebele, E. J. and Griscom, D. L., 1993, “Thermal Stability of Photoinduced Gratings and Parametric Centers in Ge- and Ge/P-Doped Silica Optical Fibers,”Optics Letters, Vol. 18, pp. 935–937.

    Article  Google Scholar 

  • Veselka, J. J. and Korothy, S. K., 1986, “Optimization of Ti:LiNbO3 Optical Waveguides and Directional Couplers Switches for 1.56 Micrometer Wavelength,”IEEE Journal of Quantum Electronics, Vol. 22, pp. 930–938.

    Article  Google Scholar 

  • Wang, A., Wang, G. Z., Gollapudi, S., May, R. G., Murphy, K. A. and Claus, R. O., 1992, “Advances in Sapphire Optical Fiber Sensors,”Proceedings of. Fiber Optic Smart Structures and Skins V, SPIE, Vol. 1798, pp. 56–65.

    Google Scholar 

  • Waxler, M., Cleek, G. W., 1973, “The Effect of Temperature and Pressure on the Refractive Index of Some Sxide Glasses,”J. Res. Nat. Bureau of Stan. Vol. 77A, No. 6, pp. 755–763.

    Google Scholar 

  • Wu, T., Ma. L. C. and Zhao, L. B., 1981, “Development of Temperature-Compensated Resistance Strain Gages for Use to 700 °C,”Experimental Mechanics, Vol. 21, No. 3, pp. 117–123.

    Article  Google Scholar 

  • Yariv, A., 1973, “Coupled-Mode Theory for Guided-Wave Optics,”IEEE Journal of Quantum Electronics, Vol. 9, pp. 919–933.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kook-Chan Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SM., Ahn, KC. & Sirkis, J.S. Planar optical waveguide temperature sensor based on etched bragg gratings considering nonlinear thermo-optic effect. KSME International Journal 15, 309–319 (2001). https://doi.org/10.1007/BF03185214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185214

Key Words

Navigation