Skip to main content
Log in

Heat transfer in turbulent tube flow

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

The differential equation for the temperature distribution in a laminar flow through a smooth cylindrical tube can be solved on certain assumptions by separating the variables; the result is a temperature distribution given by a linear combination of eigenfunctions. For a fully developed turbulent flow the same differential equation applies in principle with the following differences:a) the velocity distribution is only known from measurement; consequently only empirical formulae are available for the calculations;b) the thermal diffusivitya is increased by an amountA q due to turbulent mixing, and the value of this thermal eddy diffusivity depends upon the velocity distribution. The cross-section of the tube is divided into three concentric parts, according to the magnitude of the frictional eddy diffusivityA m : the turbulent core, where the molecular momentum diffusion is negligible in relation to the eddy diffusivity of momentum; the laminar boundary layer, where the molecular momentum diffusion prevails; and the transition layer, where eddy diffusivity and molecular diffusion of momentum are of the same order. Separately for each of these regions formulae have been drawn up for the velocity and momentum eddy diffusivityA m . Given the hypothesis thatA q /A m =A is a constant,A q follows fromA m . In the present article, for each of these three regions a general solution is given for the differential equation valid in that area, by separating the variables. The constants in these solutions have been chosen in such a way as to make the temperatures and heat currents continuous at the boundaries between the three regions. For a constant wall temperature the first two eigenfunctions and eigenvalues are calculated for severalRe andPr values. Furthermore, the heat transfer and temperature distribution for a homogeneous entrance temperature are given. The calculated eigenfunctions can also be used for calculating the heat transfer and heat distribution for a non-homogeneous entrance temperature, provided the latter is symmetrical with respect to the axis of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity of the fluid (λ/ϱ)

c :

specific heat per unit of mass (for gasesc p )

λ:

thermal conductivity of the fluid

ν:

kinematic viscosity

ϱ:

specific mass

A :

ratioA q /A m

A m :

eddy diffusivity of momentum

A q :

eddy diffusivity of heat

C w :

friction factor\(\tau _0 /\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \rho u_b^2 \)

E k :

eigenfunction in ξ

f(ξ):

reduced coefficient of heat diffusion [(a+A q )/a]

Nu 0 :

Nusselt number for tube wall (αr 0/λ)

Nu :

total Nusselt number (αr 0/λ)

m :

Péclet number (Re m Pr′)

Pr :

Prandtl number (ν/a)

Pr′ :

adapted Prandtl number (Aν/a)

dp/dz :

pressure gradient in tube

q m :

radial heat flow density due to molecular conduction (− λ∂T/∂r)

q t :

radial heat flow density due to turbulent diffusion

r :

radial distance to the axis of the tube

r 0 :

internal radius of tube

Re :

Reynolds modulus (2r 0 u b /ν)

Re′ :

Reynolds modulus (r 0 u*/ν)

Re m :

Reynolds modulus (r 0 u m /ν)

T :

temperature of the fluid

T i :

initial or entrance temperature

T m :

cup mixing mean temperature

T 0 :

ambient temperature

u* :

frictional velocity (ie148-3)

u m :

maximum velocity

u b :

mean velocity (ie148-4),

u :

local velocity

y :

distance from the wall

z :

longitudinal coordinate

α 0 :

coefficient of heat transfer as defined byq =α 0(T wall -T 0)

α:

coefficient of total heat transfer from fluid to environment [q=α(T m T 0)]

β k :

eigenvalue corresponding toE k

ζ′:

reduced longitudinal coordinate (Az/r 0)

ζ i ′:

reduced thermal entrance length

η:

reduced distance from the wall (y/r 0)

ϑ:

reduced temperature [(T − T 0)/(T i T 0)]

ϑ m :

reduced cup mixing mean temperature

ξ:

reduced variable radius (r/r 0)

τ:

shearing stress

τ 0 :

shearing stress at the wall

ϕ:

reduced velocity (u/u m )

ω:

reduced distance in the transition layer to the boundary of the turbulent core

References

  1. Reynolds, O., Proc. Manchester Lit. Phil. Soc.14 (1874) 7.

    Google Scholar 

  2. Prandtl, L., Phys.11 (1910) 1072.

    Google Scholar 

  3. Taylor, G. I., Rep. Memor. Aero. Res. Coun.272 (1919).

  4. Latzko, H., Z. angew. Math. Mech.1 (1921) 268.

    Article  Google Scholar 

  5. Nikuradse, J., Ver. dtsch. Ing. Forschungsheft (1932) 356.

  6. Kármán, Th. v., Trans. A. S. M. E.61, 8 (1939) 705.

    Google Scholar 

  7. Reichardt, H., Z. angew. Math. Mech.20 (1940) 297.

    Article  MathSciNet  Google Scholar 

  8. Martinelli, R. C., Trans. Am. Soc. Mech. Engrs.8 (1947) 947.

    Google Scholar 

  9. Prins, J. A., J. Mulder and J. Schenk, Appl. Sci. Res.A2 (1950) 31.

    Google Scholar 

  10. Deissler, R. G., N. A. C. A. Techn. Note2138 (1950).

  11. Laufer, J., N.A.C.A. Techn. Note2123 (1950).

  12. Schlich ting, H., Grenzschichttheorie, Karlsruhe 1951.

  13. Reichardt, H., Z. angew. Math. Mech.31 (1951) 208.

    Article  MATH  Google Scholar 

  14. Does de Bye, J. A. W. v. d. and J. Schenk, Appl. Sci. Res.A3 (1952) 308.

    Google Scholar 

  15. Schenk, J. and J. M. Dumoré, Appl. Sci. Res.A4 (1953) 39.

    MATH  Google Scholar 

  16. Deissler, R. G., N.A.C.A. Techn. Note3016 (1953).

  17. Deissler, R. G., N.A.C.A. Techn. Note3145 (1954).

  18. Hofmann, E., Forschung auf dem Gebiete des Ingenieurwesens20 (1954) 81.

    Article  MATH  Google Scholar 

  19. Howarth, L., Modern developments in fluid dynamics, Oxford, Vol. II, 1953.

  20. Schenk, J., and H. L. Beckers, Appl. Sci. Res.A4 (1954) 405.

    MATH  MathSciNet  Google Scholar 

  21. Berry, V. J., Appl. Sci. Res.A4 (1954) 61.

    ADS  Google Scholar 

  22. Marris, A. W., Canad. J. Phys.32 (1954) 167.

    MATH  Google Scholar 

  23. Marris, A. W., Canad. J. Phys.32 (1954) 419.

    MATH  Google Scholar 

  24. Hartnett, J. P., Trans. Am. Soc. Mech. Engrs.76 (1954).

  25. Reese, B. A. and R. W. Graham, Jet Propulsion24 (1954) 228.

    Google Scholar 

  26. Aladyev, I. T., N.A.C.A. Techn. Memo.1350 (1954).

  27. Lowdermilk, W. H., W. F. Weiland and J. N. B. Livingood, N.A.C.A. Res. Memo.E53 (1954) J07.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckers, H.L. Heat transfer in turbulent tube flow. Appl. sci. Res. 6, 147–190 (1956). https://doi.org/10.1007/BF03185034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03185034

Keywords

Navigation