Skip to main content
Log in

A semi-implicit method for the analysis of two-dimensional fluid flow with moving free surfaces

  • Thermal Engineering · Fluid Engineering · Energy and Power Engineering
  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation)-type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A j :

Area of thej-th face

c p :

Specific heat

C(u) :

Convection matrix

D e (k) :

Divergence of element

f :

Volume fraction of element

F :

Force matrix

h :

Heat transfer coefficient

H :

Pressure gradient matrix

h e :

Pressure gradient matrix of element

h e T :

Divergence operator of element

K :

Diffusion matrix

k :

Thermal conductivity

M :

Mass matrix

m e :

Mass matrix of element

p :

Pressure

T :

Temperature

u,u i :

Velocity vector and its component

V i :

Volume of the i-th element

μ:

Viscosity

ϱ:

Density

σ ij :

Viscous stress tensor

Φ:

Stream function

T :

Transpose

n :

Time step

(k):

Iteration number

e :

Element

i :

Cell number

inlet :

Inlet

j :

Face number

References

  • Brooks, A. N. and Hughes, T. J. R., 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations,”Comput. Methods Appl. Mech. Engrg., Vol. 32, pp. 199–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Chorin, A. J., 1968, “Numerical Solution of the Navier-Stokes Equations,”Math. Comput., Vol. 22, pp. 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  • De Sampaio, P. A. B., 1991, “A Petrov-Galerkin Formulation for the Incompressible Navier-Stokes Equations using Equal Order Interpolation for Velocity and Pressure,”Int. J. Numer. Methods Engrg., Vol. 31, pp. 1135–1149.

    Article  MATH  Google Scholar 

  • Dhatt, G., Gao, D. M. and Cheikh, A. B., 1990, “A Finite Element Simulations of Metal Flow in Moulds,”Int. J. Numer. Methods Engrg., Vol. 30, pp. 821–831.

    Article  Google Scholar 

  • Donea, J., Giuliani, S. and Laval, H., 1982, “Finite Element Solution of the Unsteady Navier-Stokes Equations by a Fractional Step Method,”Comput. Methods Appl. Mech. Engrg., Vol. 30, pp. 53–73.

    Article  MATH  Google Scholar 

  • Floryan, J. M. and Rasmussen, H., 1989, “Numerical Methods for Viscous Flows with Moving Boundaries,”Appl. Mech. Rev., Vol. 42, No. 12, pp. 323–341.

    Article  MathSciNet  Google Scholar 

  • Gao, D. M., 1999, “A Three-Dimensional Hybrid Finite Element-Volume Tracking Model for Mould Filling in Casting Processes,”Int. J. Numer. Methods Fluids, Vol. 29, pp. 877–895.

    Article  MATH  Google Scholar 

  • Gueyfier, D., Li, J., Nadim, A., Scardovelli, R. and Zaleski, S., 1999, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows,”J. Comput. Phys., Vol. 152, pp. 423–456.

    Article  Google Scholar 

  • Harlow, F. H. and Welch, J. E., 1965, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,”Physics of Fluids, Vol. 8, No, 12, pp. 2182–2189.

    Article  MATH  Google Scholar 

  • Harvie, D. J. E. and Fletcher, D. F., 2000, “A New Volume of Fluid Advection Algorithm: The Stream Scheme,”J. Comput. Phys., Vol. 162, pp. 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  • Harvie, D. J. E. and Fletcher, D. F., 2001, “A New Volume of Fluid Advection Algorithm: the Defined Donating Region Scheme,”Int. J. Numer. Methods Fluids, Vol. 35, pp. 151–172.

    Article  MATH  MathSciNet  Google Scholar 

  • Hetu, J. F. and Ilinca, F., 1999, “A Finite Element Method for Casting Simulations,” Numer. Heat Trans. Part A, Vol. 36, pp. 657–679.

    Article  Google Scholar 

  • Hirt, C. W. and Nichols, B. D., 1981, “Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries,”J. Comput. Phys., Vol. 39, pp. 201–225.

    Article  MATH  Google Scholar 

  • Kawahara, M. and Ohmiya, K., 1985, “Finite Element Analysis of Density Flow using the Velocity Correction Method,”Int. J. Numer. Methods Fluids, Vol. 5, pp. 981–993.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, M. S., Shin, S. and Lee W. I., 2000, “A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface (I)—New Free Surface Tracking Algorithm and Its Verification,”Trans. of KSME (B), Vol. 24, pp. 1555–1569. (in Korean)

    Google Scholar 

  • Kim, M. S., Park J. S. and Lee W. I., 2000, “A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface (II)—Application to the Cavity Filling and Sloshing Problems,”Trans. of KSME(B), Vol. 24, pp. 1570–1579. (in Korean)

    Google Scholar 

  • Laval, H. and Quartapelle, L., 1990, “A Fractional-Step Taylor-Galerkin Method for Unsteady Incompressible Flows,”Int. J. Numer. Methods Fluids, Vol. 11, pp. 501–513.

    Article  MATH  Google Scholar 

  • Lewis, R. W., Usmani, R. W. and Cross, J. T., 1995, “Efficient Mould Filling Simulation in Castings by an Explicit Finite Element Method,”Int. J. Numer. Methods Fluids, Vol. 20, pp. 493–506.

    Article  MATH  Google Scholar 

  • Martin, J. C. and Moyce, W. J., 1952, “An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane,”Philos. Trans. Roy. Soc. London Serl A, Math. Phys. Sci., Vol. 244, pp. 312–324.

    Article  MathSciNet  Google Scholar 

  • Mizukami, A. and Tsuchiya, M., 1984, “A Finite Element Method for the Three-Dimensional Non-Steady Navier-Stokes Equations,”Int. J. Numer. Methods Fluids, Vol. 4, pp. 349–357.

    Article  MATH  Google Scholar 

  • Nakayama, T. and Mori, M., 1996, “An Eulerian Finite Element Method for Time-Dependent Free Surface Problems in Hydrodynamics,”Int. J. Numer. Methods Fluids, Vol. 22, pp. 175–194.

    Article  MATH  Google Scholar 

  • Noh, W. F. and Woodward, P., 1976, “SLIC (Simple Line Interface Calculation),” inProceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamis, ed. van de Vooren, A. I. and Zandbergen, P. J., Lecture Notes in Physics, Vol. 59, pp. 330–340, Springer-Verlag, New York, USA.

    Google Scholar 

  • Ramaswamy, B., 1988, “Finite Element Solution for Advection and Natural Convection Flows,”Computers & Fluids, Vol. 16, pp. 349–388.

    Article  MATH  Google Scholar 

  • Ramaswamy, B. and Jue, T. C., 1992, “Some Recent Trends and Developments in Finite Element Analysis for Incompressible Thermal Flows,”Int. J. Numer. Methods Engrg., Vol. 35, pp. 671–707.

    Article  MATH  Google Scholar 

  • Ramshaw, J. D. and Trapp, J. A., 1976, “A Numerical Technique for Low-Speed Homogeneous Two-Phase Flow with Sharp Interface,”J. Comput. Phys., Vol. 21, pp. 438–453.

    Article  MathSciNet  Google Scholar 

  • Rider, W. J. and Kothe, D. B., 1998, “Reconstructing Volume Tracking,”J. Comput. Phys., Vol. 141, pp. 112–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Rudman, M., 1997, “Volume-Tracking Methods for Interfacial Flow Calculations,”Int. J. Numer. Methods Fluids, Vol. 24, pp. 671–691.

    Article  MATH  MathSciNet  Google Scholar 

  • Scardovelli, R. and Zaleski, S., 1999, “Direct Numerical Simulation of Free-Surface and Interfacial Flow,”Annual Reviews Fluid Mechanics, Vol. 31, pp. 567–603.

    Article  MathSciNet  Google Scholar 

  • Shin, S. and Lee, W. I., 1997, “Finite Element Analysis of Flow with Moving Free Surface by Volume of Fluid Method,”Trans. of KSME (B), Vol. 21, No. 9, pp. 1230–1243. (in Korean)

    Google Scholar 

  • Shin, S. and Lee, W. I., 2000, “Finite Element Analysis of Incompressible Viscous Flow with Moving Free Surface by Selective Volume of Fluid Method,”Int. J. Heat and Fluid Flow, Vol. 21, pp. 197–206.

    Article  Google Scholar 

  • Usmani, A. S., Cross, J. T. and Lewis, R. W., 1992, “A Finite Element Model for the Simulations of Mould Filling in Metal Casting and the Associated Heat Transfer,”Int. J. Numer. Methods Engrg., Vol. 35, pp. 787–806.

    Article  Google Scholar 

  • Young, D. L., 1982, “Time-Dependent Multi-Material Flow with Large Fluid Distorition,”in Numerical Methods for Fluid Dynamics, ed. Morton, K. W. and Baines, M. J., pp. 273–285, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Il Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Kim, M.S., Lee, J.S. et al. A semi-implicit method for the analysis of two-dimensional fluid flow with moving free surfaces. KSME International Journal 16, 720–731 (2002). https://doi.org/10.1007/BF03184822

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184822

Key Words

Navigation