Skip to main content
Log in

Non-uniform heat transfer to fluids flowing in conduits

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

The general theory of the temperature distribution in a fluid flowing in a heated conduit is discussed. Equations are derived for the temperature distribution throughout the fluid stream, and an expression is presented for the Nusselt modulus as a function of downstream position. A definite criterion is proposed for estimation of the thermal entry length. In addition, it is shown that the asymptotic value of the Nusselt modulus depends not only upon the geometry and the hydrodynamics of the system, but also upon the temperature boundary conditions imposed. A simple procedure is given for computation of the heat transfer coefficient when velocity and effective thermometric conductivity distributions are available. Both round pipes and parallel wall conduits are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of tube or half-height of duct, (cm)

A :

wall area, (cm2)

f :

friction factor

h :

local internal heat transfer coefficient, (cal/s cm2 °C)

h w :

local wall heat transfer coefficient, (cal/s cm2 °C)

k :

thermal conductivity of fluid, (cal/s cm2 °C/cm)

Nu :

Nusselt modulus

(Nu) w :

Nusselt modulus based onh w

Pr :

Prandtl Modulus

q w :

rate of heat transfer through tube wall, (cal/s)

r :

radius variable or distance from centerline of duct, (cm)

Re :

Reynolds modulus

u :

local velocity, (cm/s)

u m :

average velocity, (cm/s)

x :

distance variable in direction of flow (cm)

α :

ratioε c /ε m

γ :

Nusselt modulus for tube wall = (Nu) w

ε c :

effective turbulent thermal diffusivity, (cm2/s)

ε m :

effective turbulent kinematic viscosity, (cm2/s)

x :

thermal diffusivity of fluid, (cm2/s)

ν :

kinematic viscosity of fluid, (cm2/s)

θ :

temperature of fluid, (°C)

θ w :

temperature of wall, (°C)

θ :

temperature of surroundings, (°C)

References

  1. Von Karman, Th., Trans. A.S.M.E.61 (1939) 705.

    Google Scholar 

  2. Martinelli, R. C., Trans. A.S.M.E.69 (1947) 947.

    Google Scholar 

  3. Lyon, R. N., Chem. Eng. Prog.47 (1951) 75.

    Google Scholar 

  4. Harrison, W. B. and J. R. Menke, Trans. A.S.M.E.71 (1949) 797.

    Google Scholar 

  5. Seban, R. A., Trans. A.S.M.E.72 (1950) 789.

    Google Scholar 

  6. Seban, R. A. and T. T. Shimazaki, Trans. A.S.M.E.73 (1951) 803.

    Google Scholar 

  7. Ince, E. L., Ordinary Differential Equations, Longmans, Green and Co., New York 1927, Chap. X.

    MATH  Google Scholar 

  8. Berry, V. J. and C. R. de Prima, J. appl. Phys.23 (1952) 195.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Strutt, J. W., Baron Rayleigh, The Theory of Sound, Dover Publications, New York 1945, 109.

    Google Scholar 

  10. Beskin, L. M. and J. M. Rosenberg, J. Aero. Sci.13 (1946) 597.

    MATH  MathSciNet  Google Scholar 

  11. Prins, J. A., J. Mulder and J. Schenk, Appl. sci. Res.A2 (1950) 431.

    Google Scholar 

  12. Van der Does de Bye, J. A. W. and J. Schenk, Appl. sci. Res.A3 (1952) 308.

    Google Scholar 

  13. Norris, R. H. and D. D. Streid, Trans. A.S.M.E.62 (1940) 525.

    Google Scholar 

  14. Graetz, L., Ann. Phys.25 (1885) 337.

    Article  Google Scholar 

  15. McAdams, W. H., Heat Transmission, McGraw-Hill, New York 1942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, V.J. Non-uniform heat transfer to fluids flowing in conduits. Appl. sci. Res. 4, 61–75 (1953). https://doi.org/10.1007/BF03184666

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184666

Keywords

Navigation