Advertisement

Chinese Science Bulletin

, Volume 49, Issue 9, pp 926–930 | Cite as

ISEA reversed event in the Cretaceous Normal Superchron (CNS):40Ar/39Ar dating and paleomagnetic results

  • Ruiping Shi
  • Huaiyu He
  • Rixiang Zhu
  • Yongxin Pan
Articles

Abstract

In order to provide the age for the ISEA (one reversed event in the CNS) a combined rock magnetic, paleomagnetic and geochronologic study has been conducted on two Cretaceous andesitic basalt lava flows from Sanbaoying, Liaoning Province of northeastern China. Rock magnetic investigations show that pseudo-single domain (PSD) titanomagnetite with poor-Ti content is the dominant magnetic mineral in Sanbaoying lava flows. Detailed systematic thermal demagnetization allowed us to isolate two remanence components after removing a low temperature component at 100°C/150°C; an intermediate temperature component with normal polarity at 150°C/200°C–380°C/400°C and the characteristic remanence component (ChRM) with reversed polarity above 400°C/450°C.40Ar/39Ar dating results show that Sanbaoying rocks were erupted at 116.0 ± 0.3 Ma. Combination of paleomagnetic results and40Ar/39Ar dating indicates that the reversed event recorded in Sanbaoying lavas corresponds to the ISEA event in the CNS. Our age determination for ISEA reversed event provides chronological evidence to study the relevance between global geological events that occurred in the CNS and geodynamo processes.

Keywords

ISEA 40Ar/39Ar dating rock magnetism paleomagnetism west Liaoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Helsley, C. E., Steiner, M. B., Evidence for long intervals of normal polarity during the Cretaceous period, Earth Planet. Sci. Lett., 1969, 5: 325–332.CrossRefGoogle Scholar
  2. 2.
    Cronin, M., Tauxe, L., Constable, C. et al., Noise in the quite zone, Earth Planet. Sci. Lett., 2001, 190: 13–30.CrossRefGoogle Scholar
  3. 3.
    Zhu, R. X., Liu, Q. S., Pan, Y. X., Link between the geomagnetic polarity reversal and global-geology events, Chinese Sci. Bull. (in Chinese), 1999, 44(20): 1843–1851.Google Scholar
  4. 4.
    Kuypers, M. M. M., Pancost, R. D., Sinninghe, D. J. S., A large and abrupt fall in atmospheric CO2 concentrations during Cretaceous times, Nature, 1999, 399: 342–345.CrossRefGoogle Scholar
  5. 5.
    Stoll, H. M., Schrag, D. P., Evidence for glacial control of rapid sea level changes in the early Cretaceous, Science, 1996, 272: 1771–1774.CrossRefGoogle Scholar
  6. 6.
    Larson, R. L., Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology, 1991, 19: 547–550.CrossRefGoogle Scholar
  7. 7.
    Tarduno, J. A., Sliter, W. V., Kroenke, L. et al., Rapid formation of Ontong Java Plateau by Aptian mentle plume volcanism, Science, 1991, 254: 399–403.CrossRefGoogle Scholar
  8. 8.
    Crowley, T. J., Kim, K-Y., Comparison of long-term greenhouse projections with the geologic record, Geophys. Res. Lett., 1995, 22: 933–936.CrossRefGoogle Scholar
  9. 9.
    Herman, A. B., Spicer, R. A., Palaeobotanical evidence for a warm Cretaceous Arctic Ocean, Nature, 1996, 380: 330–333.CrossRefGoogle Scholar
  10. 10.
    Tarduno, J. A., Cottrell, R. D., Smirnov, A. V., High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals, Science, 2001, 291: 1779–1783.CrossRefGoogle Scholar
  11. 11.
    Shi, R. P., Zhu, R. X., Possible links between abnormal geological events and geodynamics during Cretaceous (in Chinese), Progress in Geophysics, 2002, 17(2): 295–300.Google Scholar
  12. 12.
    Tarduno, J. A., Brief reversed polarity internal during the Cretaceous Normal Polarity Superchron, Geology, 1990, 18: 683–686.CrossRefGoogle Scholar
  13. 13.
    Tarduno, J. A., Lowrie, W., Sliter, W. V. et al., Reversed polarity characteristic magnetizations in the Albian Contessa section, Umbrian apennines, Italy: Implications for the existence of a MidCretaceous mixed polarity interval, J. Geophys. Res., 1992, 97: 241–271.CrossRefGoogle Scholar
  14. 14.
    VandenBerg, J., Klootwijk, C. T., Wonders, A. A. H., The Late Mesozoic and Cenozoic movements of the Umbrian Peninsula: Further paleomagnetic data from the Umbrian sequence, Geol. Soc. Am. Bull., 1978, 89: 133–155.CrossRefGoogle Scholar
  15. 15.
    VanderBerg, J., Wonders, A. A. H., Paleomagnetism of Late Mesozoic pelagic limestones from the Southern Alps, J. Geophys. Res., 1980, 85: 3623–3627.CrossRefGoogle Scholar
  16. 16.
    Zhu, R. X., Pan, Y. X., Shi, R. P., New Cretaceous palaeointensity data and the constraints on geodynamics, Sci. China, Ser. D, 2002, 45(10): 931–938.CrossRefGoogle Scholar
  17. 17.
    Chen, Y. X. et al. (ed.), Mesozoic igneous rocks distributed in west Liaoning and its adjacent areas—geochronology, geochemistry and tectonic settings (in Chinese), Beijing: Seismology Publishing House, 1997.Google Scholar
  18. 18.
    Day, R., Fuller, M. D., Schmidt, V. A., Hysteresis properties of titanomagnetites: grain size and composition dependence, Phys. Earth Planet. Inter., 1977, 13: 260–266.CrossRefGoogle Scholar
  19. 19.
    Goguitachaichvili, A., Morales, J., Urrutia-Fucugauchi, J., On the use of continuous thermomagnetic curves in paleomagnetism, C. R. Acad. Sci. Earth Planet. Sci., 2001, 333: 699–704.Google Scholar
  20. 20.
    Kirschvink, J. L., The least-squares line and plane and the analysis of paleomagnetic data, Geophy. J. R. Astron. Soc., 1980, 62: 699–718.Google Scholar
  21. 21.
    Fisher, R. A., Dispersion on a sphere, Proc. R. Soc., London Ser. A, 1953, 217: 295–305.CrossRefGoogle Scholar
  22. 22.
    Baksi, A. K., Archibald, D. A., Farrar, E., Intercalibration of40Ar/39Ar dating standards, Chemical Geology, 1996, 129: 307–324.CrossRefGoogle Scholar
  23. 23.
    McDougall, I., Harrison, T. M., Geochronology and Thermochronology by the40Ar/39Ar Method, New York: Oxford University Press, 1999, 1–269.Google Scholar
  24. 24.
    Steiger, R. H., Jäger, E., Subcommission on geochronology: Convention on the use of decay constans in geo- and cosmochronogy, Earth Planet. Sci. Lett., 1977, 36: 359–362.CrossRefGoogle Scholar
  25. 25.
    Goguitchaichvili, A. L., Alva-Valdivia, M., Rosas-Elguera, J. et al., An integrated paleomagnetic study of Rio Grande de Santiago volcanic succession (trans-Mexican volcanic belt): revisited, Phys. Earth Planet. Inter., 2002, 130: 175–194.CrossRefGoogle Scholar
  26. 26.
    Zhu, R. X., Hoffman, K. A., Pan, Y. X. et al., Evidence for weak geomagnetic field intensity prior to the Cretaceous normal superchron, Phys. Earth Planet. Inter., 2003, 136: 187–199.CrossRefGoogle Scholar
  27. 27.
    Zhu, R. X., Hoffman, K. A., Nomade, S. et al., Geomagnetic paleointensity and direct age determination of the ISEA (M0r?) chron, Earth Planet. Sci. Lett., 2004, 217: 285–295.CrossRefGoogle Scholar
  28. 28.
    Gradstein, F. M., Agterberg, F. P., Ogg, J. G. et al., A Triassic, Jurassic and Cretaceous Time Scale. SEPM Special publication 54, Geochronology, time scales and global stratigraphie correlation (eds. Berggren, W. A. et al.), Hardenbol J., 1995, 95–126.Google Scholar
  29. 29.
    Pringle, M. S., Duncan, R. A., Radiometrie ages of basement lavas recovered at Loen, Wodejebato, MIT, and Takuyo-Daisan Guyots, Northwestern Pacific Ocean, Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 144: 547–557.Google Scholar
  30. 30.
    Gilder, S., Chen, Y., Cogné, J. P. et al., Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of M-0 (ISEA?) Chron, Earth Planet. Sci. Lett., 2003, 206: 587–600.CrossRefGoogle Scholar
  31. 31.
    Sobel, E. R., Arnaud, N., Cretaceous-Paleogene basaltic rocks of the Tuyon basin, NW China and Kyrgyz Tian Shan: The trace of a small plume, Lithos., 2000, 50: 191–215.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Ruiping Shi
    • 1
  • Huaiyu He
    • 1
  • Rixiang Zhu
    • 1
  • Yongxin Pan
    • 1
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations