Skip to main content
Log in

Increase in electron transfer activity in photosystem II of spinach thylakoids caused by conversion of phosphatidylglycerol to phosphatidic acid molecules

  • Reports
  • Published:
Chinese Science Bulletin

Abstract

The techniques of oxygen electrode polarography, sodium dodecyl sulfate-polyacryamide gel electrophoresis (SDS-PAGE) and thin layer chromatography (TLC) were employed to investigate the effect of phospholipase D treatment on physiological function of spinach thylakoids. It was shown that the phospholipase D treatment on thylakoid resulted in the degradation of phosphatidylglycerol (PG) and occurrence of phosphatidic acid (PA). The changes of PG to PA molecules caused an increase in oxygen evolution in photosystem II (PSII), which was accompanied by an uncoupling effect on thylakoid membrane. It was revealed that the head-groups of PG molecules play an important role in the maintenance of the appropriate physiological activity of thylakoid membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ort, D. R., Yocum, C. F. (eds.), Oxygenic Photosynthesis: The Light Reactions, The Netherlands: Kluwer Academic Publishings, 1996.

    Google Scholar 

  2. Webb, M. S., Green, B. R., Biochemical and biophysical properties of thylakoid acyl lipids, Biochim. Biophys. Acta, 1991, 1060: 133–158.

    Article  Google Scholar 

  3. Siegenthaler, P. A., Murata, M. (eds.), Lipids in Photosynthesis: Structure, Function and Genetics, the Netherlands: Kluwer Academic Publishers, 1998.

    Google Scholar 

  4. Murata, M., Higashi, S., Fujimura, Y., Glycerolipids in various preparations of photosystem II from spinach chloroplasts, Biochim. Biophys. Acta, 1990, 1019: 261–268.

    Article  Google Scholar 

  5. Jordan, P., Fromme, P., Witt, H. T. et al., Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 2002, 411: 909–917.

    Article  Google Scholar 

  6. Siegenthaler, P. A., Rawyler, A., Smutny, J., The phospholipid population which sustains the uncoupled non-cyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane, Biochim. Biophys. Acta, 1989, 975: 104–111.

    Article  Google Scholar 

  7. Duchene, S., Smutny, J., Siegenthaler, P. A., The topology of phosphatidylglycerol populations is essential for sustaining photosynthetic electron flow activities in thylakoid membranes, Biochim. Biophys. Acta, 2000, 1463(2000): 115–120.

    Google Scholar 

  8. Gombos, Z., Varkonyi, Z., Hagio, M. et al., Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone Q(B) in the photosystem II reaction center, Biochemistry, 2002, 41(11): 3796–802.

    Article  Google Scholar 

  9. Kruse, O., Hankamer, B., Konczak, C. et al., Phosphatidylglycerol is involved in the dimerization of photosystem II, J. Biol. Chem., 2000, 275(9): 6509–6514.

    Article  Google Scholar 

  10. Schmid, V. H. R., Cammarata, K. V., Brans, B. U. et al.,In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization, Proc. Natl. Acad. Sci. USA, 1997, 94: 7667–7672.

    Article  Google Scholar 

  11. Nuβberger, S., Dörr, K., Wang, D. N. et al., Lipid-protein interaction in crystals of plant light-harvesting complex, J. Mol. Biol., 1993, 224: 347–356.

    Article  Google Scholar 

  12. Hobe, S., Prytulla, S., Kuhlbrandt, W. et al., Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex, EMBO J., 1994, 13: 3423–3429.

    Google Scholar 

  13. Kruse, O., Schmid, G. H., The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II particles of the cyanobacteriumOscillatoria chalybea, Z. Naturforsch., 1995, 50c: 380–390.

    Google Scholar 

  14. Hagio, M., Gombos, Z., Varkonyi, Z. et al., Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis, Plant Physiol., 2000, 124(2): 795–804.

    Article  Google Scholar 

  15. Sato, N., Hagio, M., Wada, H. et al., Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes, Proc. Natl. Acad. Sci. USA, 2000, 97(19): 10655–10660.

    Article  Google Scholar 

  16. Xu, C. C., Hartel, H., Wada, H. et al., Thepgp1 mutant locus of arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity, Plant Physiology, 2002, 129(2): 594–604.

    Article  Google Scholar 

  17. Siegenthaler, P. A., Smutny, J., Rawyler, A., Involvement of hydrophilic and hydrophobic portion of phospholipid molecules in photosynthetic electron flow activities, Structure, Function and Metabolism of Plant Lipids (eds. Siegenthaler, P. A., Eichenberg, W.), Elsevier Science Publisher BV, Amsterdam / New York / Oxford, 1984, 475–478.

    Google Scholar 

  18. Droppa, M., Horvath, G., Hideg, E. et al., The role of phospholipids in regulating photosynthetic electron transport activities: Treatment of chloroplasts with phospholipase C, Photosyn. Res., 1995, 46: 287–293.

    Article  Google Scholar 

  19. Yang, Z. L., Wang, Z. N., Jiang, G. Z. et al., Depletion of phosphatidylglycerol head-group induces changes in oxygen evolution and protein secondary structures of photosystem II, Chinese Science Bulletin, 2002, 47(10): 824–829.

    Article  Google Scholar 

  20. Arnon, D. I., Copper enzymes in isolated chloroplasts: polyphenyloxidase inBeta vulgaris, Plant Physiol., 1949, 14: 1–15.

    Article  Google Scholar 

  21. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophase T4, Nature, 1970, 227: 680–685.

    Article  Google Scholar 

  22. Floch, J., Lees, M., Sloane-Stanley, G. A., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, 226: 497–509.

    Google Scholar 

  23. Jordan, B. R., Chow, W. S., Baker, A. J., The role of phospholipids in the molecular organization of pea chloroplast membranes, Effect of depletion on photosynthetic activities, Biochim. Biophys. Acta, 1983, 725: 77–86.

    Article  Google Scholar 

  24. Yang, Z. L., Jiang, G. Z., Wang, Z. N. et al., Effect of phospholipid depletion on the function and structure of photosystem II, Acta Chimica Sinica, 2001, 59(9): 1502–1506.

    Google Scholar 

  25. Haines, T. H., Dencher, N. A., Cardiolipin: a proton trap for oxidative phosphorylation, FEBS Letters, 2002, 26508: 1–5.

    Google Scholar 

  26. Eastman, S. J., Hope, M. J., Cullis, P. R., Transbilayer transport of phosphatidic acid in response to transmembrane pH gradients, Biochemistry, 1991, 30(7): 1740–1745.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenle Yang.

About this article

Cite this article

Wu, F., Yang, Z., Li, L. et al. Increase in electron transfer activity in photosystem II of spinach thylakoids caused by conversion of phosphatidylglycerol to phosphatidic acid molecules. Chin. Sci. Bull. 48, 1581–1585 (2003). https://doi.org/10.1007/BF03183965

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183965

Keywords

Navigation