Skip to main content
Log in

Conditional moment closure modeling of a lifted turbulent flame

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Results obtained using conditional moment closure (CMC) approach to modeling a lifted turbulent hydrogen flame are presented. Predictions are based onk-ε-g turbulent closure, a 23-step chemical mechanism and a radially averaged CMC model. The objectives are to find out how radially averaged CMC can represent a lifted flame and which mechanism of flame stabilization can be described by this modeling method. As a first stage of the study of multi-dimensional CMC for large eddy simulation (LES) of the lifted turbulent flames, the effect of turbulence upon combustion is included, the high-order compact finite-difference scheme (Padé) is used and previously developed characteristic-wave-based boundary conditions for multicomponent perfect gas mixtures are here extended to their conditional forms but the heat release due to combustion is not part of the turbulent calculations. Attention is focused to the lift-off region of the flame which is commonly considered as a cold flow. Comparison with published experimental data and the computational results shows that the lift-off height can be accurately determined, and Favre averaged radial profiles of temperature and species mole fractions are also reasonably well predicted. Some of the current flame stabilization mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klimenko, A. Y., Bilger, R. W., Conditional moment closure for turbulent combustion, Progress in Energy and Combustion Science, 1999, 25: 595–687.

    Article  Google Scholar 

  2. Bilger, R. W., Future progress in turbulent combustion research, Progress in Energy and Combustion Science, 2000, 26: 367–380.

    Article  Google Scholar 

  3. Williams, F. A., Progress in knowledge of flamelet structure and extinction, Progress in Energy and Combustion Science, 2000, 26: 657–682.

    Article  Google Scholar 

  4. Swaminathan, N., Bilger, R. W., Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames, Combustion and Flame, 1999, 116: 519–545.

    Article  Google Scholar 

  5. Pope, S. B., PDF methods for turbulent reactive flows, Progress in Energy and Combustion Science, 1985, 11: 119–192.

    Article  Google Scholar 

  6. Muradoglu, M., Liu, K., Pope, S. B., PDF modeling of a bluff-body stabilized turbulent flame, Combustion and Flame, 2003, 132: 115–137.

    Article  Google Scholar 

  7. Bilger, R. W., Conditional moment closure for turbulent reacting flow, Physics of Fluids, 1993, 5: 436–444.

    Article  Google Scholar 

  8. Klimenko, A. Y., Multicomponent diffusion of various admixtures in turbulent flow, Fluid Dynamics, 1990, 25: 327–334.

    Article  Google Scholar 

  9. Kim, S. H., Huh, K. Y., Liu, T., Application of the elliptic conditional moment closure model to a two-dimensional nonpremixed methanol bluff-body flame, Combustion and Flame, 2000, 120: 75–90.

    Article  Google Scholar 

  10. Kim, S. H., Huh, K. Y., Use of the conditional moment closure model to predict NO formation in a turbulent CH4/H2 flame over a bluff-body, Combustion and Flame, 2002, 130: 94–111.

    Article  Google Scholar 

  11. Fairweather, M., Woolley, R. M., First-order conditional moment closure modeling of turbulent, nonpremixed hydrogen flames, Combustion and Flame, 2003, 133: 393–405.

    Article  Google Scholar 

  12. Fairweather, M., Woolley, R. M., First-order conditional moment closure modeling of turbulent, nonpremixed methane flames, Combustion and Flame, 2004, 138: 3–19.

    Article  Google Scholar 

  13. Cleary, M. J., Kent, J. H., A numerical method for conditional moment closure, 2003 Australian Symposium on Combustion & the 8th Australian Flames Days, 8–9 December 2003, Monash University, Australia.

  14. Cleary, M. J., Kent, J. H., Bilger, R. W., A computational method for combustion using conditional moment closure, Report.

  15. Barlow, R. S., Smith, N. S. A., Chen, J. Y., Bilger, R. W., Nitric oxide formation in dilute hydrogen jet flames: Isolation of the effects of radiation and turbulence-chemistry submodels, Combustion and Flame, 1999, 117: 4–31.

    Article  Google Scholar 

  16. Jiménez, C., Cuenot, B., Poinsot, T., Numerical simulation and modeling for lean stratified propane-air flames, Combustion and Flame, 2002, 128: 1–21.

    Article  Google Scholar 

  17. Kronenburg, A., Bilger, R. W., Kent, J. H., Modeling soot formation in turbulent methane-air jet diffusion flames, Combustion and Flame, 2000, 121: 24–40.

    Article  Google Scholar 

  18. Roomina, M. R., Bilger, R. W., Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame, Combustion and Flame, 2001, 125: 1176–1195.

    Article  Google Scholar 

  19. Bilger, R. W., Marker fields for turbulent premixed combustion, Combustion and Flame, 2004, 138: 188–194.

    Article  Google Scholar 

  20. Devaud, C. B., Bray, K. N. C., Assessment of the applicability of conditional moment closure to a lifted turbulent flame: First order model, Combustion and Flame, 2003, 132: 102–114.

    Article  Google Scholar 

  21. Vanquickenborne, L., Tiggelen, A. V., The stabilization mechanism of lifted diffusion flames, Combustion and Flame, 1966, 10: 59–68.

    Article  Google Scholar 

  22. Peters, N., Williams, F., Lift-off characteristics of turbulent jet diffusion flames, AIAA Journal, 1983, 21: 423–429.

    Article  Google Scholar 

  23. Schefer, R., Namazian, M., Kelly, J., Stabilization of lifted turbulent flames, Combustion and Flame, 1994, 99: 75–86.

    Article  Google Scholar 

  24. Brockhinke, A., Andresen, P., Kohse-Hoinghaus, K., Quantitative one-dimensional single-pulse multispecies concentration and temperature-measurement in the lift-off region of a turbulent H2 air diffusion flame, Applied Physics B, 1995, 61: 533–545.

    Article  Google Scholar 

  25. Ma, C. Y., Mahmud, T., Fairweather, M., Hampartsoumian, E., Gaskell, P. H., Prediction of lifted, non-premixed turbulent flames using a mixedness-reactedness Famelet model with radiation heat loss, Combustion and Flame, 2002, 128: 60–73.

    Article  Google Scholar 

  26. Liu, F., Guo, H., Smallwood, G. J., A robust and accurate algorithm of the β-pdf integration and its application to turbulent methane-air diffusion combustion in a gas turbine combustor simulator, International Journal of Thermal Science, 2002, 41: 763–772.

    Article  Google Scholar 

  27. Chen, C. S., Chang, K. C., Chen, J. Y., Application of a robust β-pdf treatment to analysis of thermal no formation in nonpremixed hydrogen-air flame, Combustion and Flame, 1994, 98: 375–390.

    Article  Google Scholar 

  28. Klimenko, A. Y., Note on the conditional moment closure in turbulent shear flows, Physics of Fluids A, 1995, 7: 446–448.

    Article  Google Scholar 

  29. Stårner, S., Bilger, R. W., Lyons, K., Frank, J., Long, M., Conserved scalar measurements in turbulent diffusion flames by a Raman and Rayleigh ribbon imaging method, Combustion and Flame, 1994, 99: 347–354.

    Article  Google Scholar 

  30. Chen, Y.-C., Mansour, M., Measurements of scalar dissipation in turbulent hydrogen diffusion flames and some implications of combustion modeling, Combustion Science and Technology, 1997, 126: 291–313.

    Article  Google Scholar 

  31. O’Brien, E. E., Jiang, T. L., The conditional dissipation rate of an initial binary scalar in homogeneous turbulence, Physics of Fluids, 1991, 3: 3121–3123.

    Article  Google Scholar 

  32. Peters, N., Laminar diffusion flamelet models in nonpremixed turbulent combustion, Progress in Energy and Combustion Science, 1984, 10: 319–339.

    Article  Google Scholar 

  33. Jiang, X., Luo, K. H., Combustion-induced buoyancy effects of an axisymmetric reactive plume, Proceedings of the Combustion Institute, 2000, 28: 1989–1995.

    Article  Google Scholar 

  34. Sanjiva, K. L., Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, 1992, 116: 247–261.

    Google Scholar 

  35. Kevin, W. T., Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, 1987, 68: 1–24.

    Article  Google Scholar 

  36. Poinsot, T. J., Lele, S. K., Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, 1992, 101: 104–129.

    Article  Google Scholar 

  37. Baum, M., Poinsot, T. J., Thévenin, D., Accurate boundary conditions for multicomponent reactive flows, Journal of Computational Physics, 1994, 116: 247–261.

    Article  Google Scholar 

  38. Brockhinke, A., Andresen, P., Kohse-Hoinghaus, K., Quantitative one-dimensional single-pulse multispecies concentration and temperature-measurement in the lift-off region of a turbulent h2 air diffusion flame, Applied Physics B, 1995, 61: 533–545.

    Article  Google Scholar 

  39. Tacke, M., Geyer, D., Hassel, E., Janicka, J., A detailed investigation of the stabilization point of lifted turbulent diffusion flames, in Twenty-seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998, 1157–1165.

    Google Scholar 

  40. Brockhinke, A., Haufe, S., Kohse-Hoinghaus, K., Structural properties of lifted hydrogen jet flames measured by laser spectro-scopic techniques, Combustion and Flame, 2000, 121: 367–377.

    Article  Google Scholar 

  41. Cheng, T., Wehrmeyer, J., Pitz, R., Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame, Combustion and Flame, 1992, 91: 323–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

About this article

Cite this article

Jiang, Y., Qiu, R., Zhou, W. et al. Conditional moment closure modeling of a lifted turbulent flame. Chin.Sci.Bull. 50, 1261–1269 (2005). https://doi.org/10.1007/BF03183702

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183702

Keywords

Navigation