The oldest known dinoflagellates: Morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province

Abstract

Abundant and well-preserved organic-walled microfossils including acanthomorphic acritarchs have been found in Mesoproterozoic Beidajian Formation in the Yongji area of Shanxi Province, North China. The morphological and ultrastructural features of these acanthomorphic acritarchs resemble living dinoflagellates (e.g. double-walled and polygonal structures), which leads to the interpretation of these fossils as probably the oldest dinoflagellates. The detection of dinosterane, a dinoflagellate biomarker, from pyrolytic product of these fossils further supports the morphological inference. This finding is consistent with molecular clock estimate that dinoflagellates may have diverged 700 to 900 million years (Ma) before previously known fossil record.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Dodge, J. D., Chromosome structure in the dinoflagellates and the problem of mesocaryotic cell, Excerpta Medica, International Congress Series, 1965, 91: 339–345.

    Google Scholar 

  2. 2.

    Taylor, F. J. R., General group characteristics, special features of interest, short history of dinoflagellate study, in The Biology of Dinoflagellates (ed. Taylor, F. J. R.), Oxford: Blackwell Scientific, 1987, 1–23.

    Google Scholar 

  3. 3.

    Evitt, W. R., Sporopollenin dinoflagellate cysts: Their Morphology and Interpretation, Austin, Texas: American Association of Stratigraphic Palynologists Foundation, 1985, 1–333.

  4. 4.

    Lipps, J. H., Introduction to fossil prokaryotes and protists, in Fossil Prokaryotes and Protists (ed. Lipps, J. H.), Boston: Blackwell, 1993, 1–10.

    Google Scholar 

  5. 5.

    Knoll, A. H., Archean and Proterozoic Paleontology, in Palynology: Principles and Applications (eds. Jansonius, J., McGregor, D. C.), American Association of Stratigraphic Palynologists Foundation, Dallas, TX, 1996, 3: 1249–1277.

    Google Scholar 

  6. 6.

    Peters, K. E., Moldowan, J. M., The biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Printice-Hall, Englewood Cliffs, NJ, 1993.

  7. 7.

    Goodman, D. K., Dinoflagellate cysts in ancient and modern sediments, in the Biology of Dinoflagellate (ed. Taylor, F. J. R.), Oxford: Blackwell Scientific, 1987, 649–722.

    Google Scholar 

  8. 8.

    Helby, R., Morgan, R., Partridge, A. D., A palynological zonation of the Australian Mesozoic, in Studies in Australian Mesozoic Palynology (ed. Jell, P. A.), Association of Australian Palaeontologists, Sydney, 1987, 1–94.

    Google Scholar 

  9. 9.

    Sarjeant, W. A. S.,Arpylorus antiquus Calandra, emend., a dinoflagellate cyst from the Upper Silurian, Palynology, 1978, 2: 167–179.

    Google Scholar 

  10. 10.

    Butterfield, N. J., Rainbird, R. H., Diverse organic-walled fossils, including “possible dinoflagellates” from the early Neoproterozoic of Arctic Canada, Geology, 1998, 26: 963–966.

    Article  Google Scholar 

  11. 11.

    Wall, D., Dale, B., Modern dinoflagellate cysts and evolution of the Peridiniales, Micropaleontology, 1968, 14: 265–304.

    Article  Google Scholar 

  12. 12.

    Fensome, R. A., Taylor, F. J. R., Norris, G. et al., A classification of living and fossil dinoflagellates, Micropaleontology Society Special Publication, 1993, 7: 1–351.

    Google Scholar 

  13. 13.

    Moldowan, J. M., Dahl, J., Jacobson, S. R. et al., Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors, Geology, 1996, 24(2): 159–162.

    Article  Google Scholar 

  14. 14.

    Hou, D. J., Wang, T. G., Dinosteranes in terrestrial deposits and crude oils, Chinese Science Bulletin, 1995, 40(22): 1903–1906.

    Google Scholar 

  15. 15.

    Shimuzu, Y., Alam, M., Kobayashi, A., Dinosterol, the major sterol with a unique side chain in the toxic dinoflagellate,Gonyaulax tamarensis, Journal of the American Chemical Society, 1976, 98: 1059–1060.

    Article  Google Scholar 

  16. 16.

    Hao, Y. C., Mao, S. Z., Micropalaeontology (in Chinese), Wuhan: China University of Geosciences Press, 1989.

    Google Scholar 

  17. 17.

    Talyzina, N. M., Moldowan, J. M., Johannisson, A. et al., Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers, Review of Palaeobotany and Palynology, 2000, 108: 37–53.

    Article  Google Scholar 

  18. 18.

    Guan, B. D., Geng, W. C., Rong, Z. Q. et al., The Middle and Upper Proterozoic in the northern slope of the eastern Qinling Ranges, Henan, China (in Chinese), Zhengzhou: Henan Science and Technology Press, 1988.

    Google Scholar 

  19. 19.

    Yin, L. M., Yuan, X. L., Review of the microfossil assemblage from the late Mesoproterozoic Ruyang Group in Shanxi, China, Acta Micropalaeontologica Sinica, 2003, 20(1): 39–46.

    Google Scholar 

  20. 20.

    Javaux, E. J., Knoll, A. H., Walter, M. R., Morphological and ecological complexity in early eukaryotic ecosystems, Nature, 2001, 412: 66–69.

    Article  Google Scholar 

  21. 21.

    Xiao, S. H., Knoll, A. H., Kaufman, A. J. et al., Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform, Precambrian Research, 1997, 84: 197–220.

    Article  Google Scholar 

  22. 22.

    Martin, F., Kjellström, G., Ultrastructural study of some Ordovician acritarchs from Gotland, Sweden. Neues Jahrb. Geol. Paläontol. Monatsh, 1973 (1): 44–54

    Google Scholar 

  23. 23.

    Kaufman, A. J., Xiao, S. H., High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils, Nature, 2003, 425: 279–282.

    Article  Google Scholar 

  24. 24.

    Bujak, J. P., Williams, G. L., The evolution of dinoflagellates, Can Jour Bot, 1981, 59: 2077–2087.

    Article  Google Scholar 

  25. 25.

    Norris, G., Phylogeny and a Reviewed surprageneric Classification for Triassic-Quaternary Organic-walled Dinoflagellate Cysts (Pyrrhophyta), Part I. Cyst Terminology and Assesment of Previous Classification. N.jb. Geol. Palaont, Abh., 1978, 155(3): 300–327.

    Google Scholar 

  26. 26.

    Shi, J. Y., Xiang, M. J., Xu, S. P., Biomarkers and evolution of life in Precambrian (in Chinese), Acta Sedimentologica Sinica, 2000, 18(4): 634–638.

    Google Scholar 

  27. 27.

    Brock, J. J., Logan, G. A., Buick, R. et al., Archean Molecular Fossils and the Early Rise of Eukaryotes, Science, 1999, 285: 1033–1036.

    Article  Google Scholar 

  28. 28.

    Wang, R. Y., Zhou, W., Dai, J. B. et al., Identification of long chain isoprenoid hydrocarbons from pyrolytic product ofDunaliella, Chinese Science Bulletin, 1999, 44(18): 1700–1705.

    Article  Google Scholar 

  29. 29.

    Summons, R. E., Thomas, J., Maxwell, J. R. et al., Secular and environmental constraints on the occurrence of dinosterane in sediments: Geochimica et Cosmochimica Acta, 1992, 56: 2437–2444.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xunlai Yuan.

About this article

Cite this article

Meng, F., Zhou, C., Yin, L. et al. The oldest known dinoflagellates: Morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chin.Sci.Bull. 50, 1230–1234 (2005). https://doi.org/10.1007/BF03183698

Download citation

Keywords

  • Mesoproterozoic
  • Beidajian Formation
  • acanthomorphic acritarch
  • dinoflagellate
  • dinosterane