Skip to main content
Log in

Gene expression and molecular characterization of a thermostable trehalose phosphorylase fromThermoanaerobacter tengcongensis

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript
  • 3 Altmetric

Abstract

A gene encoding the trehalose phosphorylase (TreP), which reversibly catalyzes trehalose degradation and synthesis from α-glucose-1-phosphate (α-Glc-1-P) and glucose, was cloned fromThermoanaerobacter tengcongensis and successfully expressed inEscherichia coli. The overexpressed TreP, with a molecular mass of approximately 90 kDa, was determined by SDS-PAGE. It catalyzes trehalose synthesis and degradation optimally at 70°C (for 30 min), with the optimum pHs at 6.0 and 7.0, respectively. It is highly thermostable, with a 77% residual activity after incubation at 50°C for 7 h. Under the optimum reaction conditions, 50 μg crude enzyme of the TreP is able to catalyze the synthesis of trehalose up to 11.6 mmol/L from 25 mmol/L α-Glc-1-P and 125 mmol/L glucose within 30 min, while only 1.5 mmol/L out of 250 mmol/L trehalose is degraded within the same time period. Dot blotting revealed that thetreP gene inT. tengcongensis was upregulated in response to salt stress but downregulated when trehalose was supplied. Both results indicate that the dominant function of theT. tengcongensis TreP is catalyzing trehalose synthesis but not degradation. Thus it might provide a novel route for industrial production of trehalose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer, M. A., Lindquist, S., Thermotolerance inSaccharomyces cerevisiae: The Yin and Yang of trehalose, Trends. Biotechnol., 1998, 16(11): 460–468.

    Article  CAS  PubMed  Google Scholar 

  2. Elbein, A. D., Pan, Y. T., Pastuszak, I. et al., New insights on trehalose: A multifunctional molecule, Glycobiology, 2003, 13(4): 17R-27R.

    Article  CAS  PubMed  Google Scholar 

  3. Schiraldi, C., Di Lernia, I., De Rosa, M., Trehalose production: exploiting novel approaches, Trends. Biotechnol., 2002, 20(10): 420–425.

    Article  CAS  PubMed  Google Scholar 

  4. De Smet, K. A., Weston, A., Brown, I. N. et al., Three pathways for trehalose biosynthesis in mycobacteria, Microbiology, 2000, 146: 199–208.

    PubMed  Google Scholar 

  5. Page-Sharp, M., Behm, C. A., Smith, G. D., Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterialScytonema species isolated from desert soils, Biochim. Biophys. Acta, 1999, 1472: 519–528.

    CAS  PubMed  Google Scholar 

  6. Maruta, K., Mukai, K., Yamashita, H. et al., Gene encoding a trehalose phosphorylase fromThermoanaerobacter brockii ATCC 35047, Biosci. Biotechnol. Biochem., 2002, 66(9): 1976–1980.

    Article  CAS  PubMed  Google Scholar 

  7. Han, S. E., Kwon, H. B., Lee, S. B. et al., Cloning and characterization of a gene encoding trehalose phosphorylase (TreP) fromPleurotus sajor-caju., Protein. Expr. Purif., 2003, 30(2): 194–202.

    Article  CAS  PubMed  Google Scholar 

  8. Xue, Y., Xu, Y., Liu, Y. et al.,Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China, Int. J. Syst. Evol. Microbiol., 2001, 51: 1335–1341.

    CAS  Google Scholar 

  9. Bao, Q., Tian, Y., Li, W. et al., A complete sequence of theT. tengcongensis genome, Genome Res., 2002, 12(5): 689–700.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J., Liu, J., Zhou, J. et al., Thermostable esterase fromThermoanaerobacter tengcongensis: High-level expression, purification and characterization, Biotechnology Letters, 2003, 25: 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.

    Google Scholar 

  12. Zhou, M., Xiang, H., Sun, C. et al., Complete sequence and molecular characterization of pNB101, a rolling-circle replicating plasmid from the haloalkaliphilic archaeonNatronobacterium sp. strain AS7091, Extremophiles, 2004, 8(2): 91–98.

    Article  CAS  PubMed  Google Scholar 

  13. Papadopoulos, N. M., Hess, W. C., Determination of neuraminic (sialic) acid, glucose and fructose in spinal fluid, Arch. Biochem. Biophys., 1960, 88: 167–171.

    Article  CAS  PubMed  Google Scholar 

  14. Rolim, M. F., de Araujo, P. S., Panek, A. D. et al., Shared control of maltose and trehalose utilization inCandida utilis, Braz. J. Med. Biol. Res., 2003, 36(7): 829–837.

    Article  CAS  PubMed  Google Scholar 

  15. Wolf, A., Kramer, R., Morbach, S., Three pathways for trehalose metabolism inCorynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress, Mol. Microbiol., 2003, 49(4): 1119–1134.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuyu Dai or Hua Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Dai, X., Zhou, J. et al. Gene expression and molecular characterization of a thermostable trehalose phosphorylase fromThermoanaerobacter tengcongensis . Sci. China Ser. C.-Life Sci. 48, 221–227 (2005). https://doi.org/10.1007/BF03183615

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183615

Keywords

Navigation