Skip to main content
Log in

Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage methods in the information storage as well as information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terris, B. D., Mamin, H. J., Rugar, D., Near-field optical data storage, Appl. Phy. Lett., 1996, 68(2): 141–143.

    Article  Google Scholar 

  2. Van Heerden, P. J., Theory of optical information storage in solids, Appl. Opt., 1963, (2): 393–400.

  3. Burr, G. W., Jefferson, C. M., Coufal, H. et al., Volume holographic data storage at an areal density of 250 gigapixels/in2, Opt. Lett., 2001, 26(7): 444–446.

    Article  Google Scholar 

  4. Coufal, H. J., Psaltis, D., Sincerbox, G. T., Holographic Data Storage, New York: Springer-Verlag Burlin Heidelberg, 2000, 3–20.

    Google Scholar 

  5. Heanue, J. F., Bashaw, M. C., Hesselink, L., Volume holographic storage and retrieval of digital data, Science, 1994, 16: 605–607.

    Google Scholar 

  6. Psaltis, D., Mok, F., Holographic memories, Science America, 1995, 273: 70–76.

    Google Scholar 

  7. Ashley, J., Bernal, M. P., Burr, G. W. et al., Holographic data storage, IBM J. Res. and Dev., 2000, 44(3): 341–368.

    Google Scholar 

  8. Kincade, K., Holographic data storage prepares for the real world, Laser Focus World, 2003, 39(10): 68–73.

    Google Scholar 

  9. Yang, Y. P., Adibi, A., Psaltis, D. et al., Comparison of transmission and the 90-degree holographic recording geometry, Appl. Opt., 2003, 42(17): 3418–3427.

    Article  Google Scholar 

  10. Leith, E. N., Kozma, A., Upatnieks, J. et al., Holographic data storage in three-dimensional media, Appl. Opt., 1966, 5(8): 1303–1311.

    Article  Google Scholar 

  11. Curtis, K., Pu, A., Psaltis, D. et al., Method for holographic storage using peristrophic multiplexing, Opt. Lett., 1994, 19(13): 993–994.

    Article  Google Scholar 

  12. Rakuljic, G. A., Levya, V., Yariv, A., Optical data storage by using orthogonal wavelength-multiplexed volume holograms, Opt. Lett., 1992, 17(20): 1471–1473.

    Article  Google Scholar 

  13. Denz, C., Pauliat, G., Roosen, G., Volume hologram multiplexing using a deterministic phase encoding method, Opt. Comm., 1991, 85: 171–176.

    Article  Google Scholar 

  14. Psaltis, D., Levene, M., Pu, A. et al., Holographic storage using shift multiplexing, Opt. Lett., 1995, 7(20): 782–784.

    Article  Google Scholar 

  15. Tao, S. Q., Song, Z. H., Selviah, D. R. et al., Spatioangular multiplexing scheme for dense holographic storage, Appl. Opt., 1996, 35(14): 2380–2388.

    Article  Google Scholar 

  16. Markov, V., Millerd, J., Trolinger, J. et al., Multilayer volume holographic optical memory, Opt. Lett., 1999, 24(4): 265–267.

    Article  Google Scholar 

  17. Song, X. Y., He, Q. S., Wu, M. X. et al., A study on the cross-talk caused by DPL in crystal holographic data storage, J. of Optoelectronics·Laser (in Chinese), 2000, 11(3): 258–261.

    Google Scholar 

  18. Wang, J. N., He, S. R., He, Q. S. et al., Insensitivity of speckle multiplexing to multi-longitudinal modes of laser in volume holographic storage, Chin. Phy. Lett., 2003, 20(7): 1047–1050.

    Article  Google Scholar 

  19. He, Q. S., Wang, J. N., Zhang, P. K. et al., Dynamic speckle multiplexing scheme in volume holographic data storage and its realization, Opt. Exp., 2003, 11(4): 366–370.

    Article  Google Scholar 

  20. Vadde, V., Vijaya Kumar, V. V. K., Channel modeling & estimation for intrapage equalization in pixel-matched volume holographic data storage, Appl. Opt., 1999, 38: 4374–4368.

    Article  Google Scholar 

  21. Huang, X. B., He, Q. S., Shang, W. X. et al., Study of intra-page crosstalk suppression in volume holographic storage, Chin. J. of Lasers (in Chinese), 2003, 30: 79–80.

    Google Scholar 

  22. Burr, B. W., Ashley, J., Coufal, H. J. et al., Modulation coding for pixel-matched holographic data storage, Opt. Lett., 1997, 22(9): 639–641.

    Article  Google Scholar 

  23. Gu, C., Fu, H., Lien, J. R., Correlation patterns and cross-talk noise in volume holographic optical correlators, J. Opt. Soc. of Am. A, 1995, 12(5): 861–868.

    Article  Google Scholar 

  24. Feng, W. Y., Yan, Y. B., Jin, G. F. et al., Volume holographic wavelet correlation processor, Opt. Eng., 2000, 39(9): 2444–2450.

    Article  Google Scholar 

  25. Ouyang, C., Cao, L. C., He, Q. S. et al., Sidelobe suppression in volume holographic optical correlators by use of speckle modulation, Opt. Lett., 2003, 28(20): 1972–1974.

    Article  Google Scholar 

  26. Su, W. C., Chen, Y. W., Ouyang, Y. et al., Optical identification using a random phase mask, Opt. Comm., 2003, 219: 117–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangcai Cao.

About this article

Cite this article

Cao, L., He, Q., Wei, H. et al. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3 . Chin.Sci.Bull. 49, 2429–2434 (2004). https://doi.org/10.1007/BF03183433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183433

Keywords

Navigation