Skip to main content
Log in

Applications of stable isotopes to study plant-animal relationships in terrestrial ecosystems

  • Review
  • Published:
Chinese Science Bulletin

Abstract

As natural tracers, stable isotopes have been extensively used in plant physiological, ecological and environmental research. Recently, animal physiological ecologists have also applied stable isotope techniques to study plantanimal relationships. The isotopic compositions of animal body generally reflect and integrate their diets over a time period ranging from hours to years to the lifetime of an individual. When animal living habitat changes or animals move to a new environment, the animal isotopic compositions will shift accordingly. Thus, stable isotope signatures of an animal can truly reflect its food sources, habitat, distribution and movement patterns during a given time period. Moreover, by analyzing animal-tissue isotopic compositions at different temporal scales, we can improve our understanding of animal adaptation to environmental changes. Stable isotope technique also provides an ideal tool to study animal foodweb relationship and community structure because of isotopic fractionation during the processes of nutrient assimilation by animals. Stable isotope technique can continuously measure animal trophic position in a foodweb, which can eventually reveal the predator-prey relationship and its role in determining matter balance and energy flow in the entire ecosystem. Stable isotope technique has been one of the most important and efficient tools in studying plant-animal relationship. In this paper, we first review recent advances in the application of stable isotope techniques to plant-animal relationship research then evaluate their advantages and disadvantages, and finally discuss some future directions associated with stable isotope applications to plant-animal relationship research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawson, T. E., Mambelli, S., Plamboeck, A. H. et al., Stable isotopes in plant ecology, Ann. Rev. Ecol. Syst., 2002, 33: 507–559.

    Article  Google Scholar 

  2. Schulze, E. D., Ellis, R., Schulze, W. et al., Diversity, metabolic type and δ13C carbon isotope ratios in the flora of Namibia in relation to growth form, precipitation and habitat conditions, Oecologia, 1996, 106: 352–369.

    Article  Google Scholar 

  3. Evans, R. D., Physiological mechanisms influencing plant nitrogen isotope composition, Trends Plant Sci., 2001, 6: 121–126.

    Article  Google Scholar 

  4. Máguas, C., Griffiths, H., Applications of stable isotopes in plant ecology, Prog. Bot., 2003, 64: 473–505.

    Google Scholar 

  5. Schwinning, S., Ehleringer, J. R., Water use trade-off and optimal adaptations to pulse-driven arid ecosystems, J. Ecol., 2001, 89: 464–480.

    Article  Google Scholar 

  6. Yakir, D., Sternberg, L. D. S. L., The use of stable isotopes to study ecosystem gas exchange, Oecologia, 2000, 123: 297–311.

    Article  Google Scholar 

  7. Pataki, D. E., Ellsworth, D. S., Evans, R. D. et al., Tracing changes in ecosystem function under elevated carbon dioxide conditions, Bioscience, 2003, 53: 805–818.

    Article  Google Scholar 

  8. Balasse, M., Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling, Int. J. Osteoarchaeol., 2002, 12: 155–165.

    Article  Google Scholar 

  9. Sponheimer, M., Lee-Thorp, J. A., Differential resource utilization by extant great apes and australopithecines: Towards solving the C conundrum, Comp. Biochem. Physiol. Part A, 2003, 136: 27–34.

    Article  Google Scholar 

  10. Yi, X. F., Zhang, X. A., Li, L. X. et al., Analysis on food web structure in alpine meadow ecosystem: evidence from sable carbon isotope signatures, Zool. Res. (in Chinese), 2004, 25(1): 1–6.

    Google Scholar 

  11. Forero, M. G., Hobson, K. A., Using stable isotopes of nitrogen and carbon to study seabird ecology: Applications in the Mediterranean seabird community, Sci. Mar., 2003, 67(Supp. 2): 23–32.

    Article  Google Scholar 

  12. Hobson, K. A., Tracing origins and migration of wildlife using stable isotopes: A review, Oecologia, 1999, 120: 314–326.

    Article  Google Scholar 

  13. Chen, S. P., Bai, Y. F., Han, X. G., Applications of stable carbon isotope techniques to ecological research, Acta Phytoecol. Sin. (in Chinese), 2002, 26(5): 549–560.

    Google Scholar 

  14. Yi, X. F., Li, L. X., Zhang, X. A. et al., Diet shift of upland buzzards (Buteo hemilasius): Evidence from stable carbon isotope ratios, Acta Zool. Sin. (in Chinese), 2003, 49(6): 764–768.

    Google Scholar 

  15. Lin, G. H., Ke, Y., Stable isotope techniques and global change research, in: Lectures on Modern Ecology (eds. Li, B.) (in Chinese), Beijing: Science Press, 1995, 161–188.

    Google Scholar 

  16. Taylor, H. P. Jr., An application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Econ. Geol., 1974, 69: 843–883.

    Article  Google Scholar 

  17. Yapp, C. J., Epstein, S., A re-examination of cellulose carbon-bound hydrogen D measurements and some factors affecting plant-water D/H relationships. Geochim. Cosmochim. Acta, 1982, 46: 955–965.

    Article  Google Scholar 

  18. Körner, C., Farquhar, G. D., Wong, S. C., Carbon isotope discrimination by plants follows latitudinal and altitudinal trends, Oecologia, 1991, 74: 623–632.

    Article  Google Scholar 

  19. Garten, C. T. J., Variation in foliar15N abundance and the availability of soil nitrogen on Walker Branch watershed, Ecology, 1993, 74: 2098–2113.

    Article  Google Scholar 

  20. DeNiro, M. J., Epstein, S., Influence of diet on the distribution of carbon isotopes in animals, Geochim. Cosmochim. Acta, 1978, 42: 495–506.

    Article  Google Scholar 

  21. Yoneyama, T., Ohta, Y., Ohtani, T., Variations of natural13C and15N abundances in the rat tissues and their correlation, Radioisotopes, 1983, 32: 330–332.

    Google Scholar 

  22. Teeri, J. A., Schoeller, D. A., δ13C values of an herbivore and the ratio of C3 to C4 plant carbon in its diet, Oecologia, 1979, 39: 197–200.

    Article  Google Scholar 

  23. Jim, S., Ambrose, S. H., Evershed, R. P., Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: Implications for their use in palaeodietary reconstruction, Geochim. Cosmochim. Acta, 2004, 68: 61–72.

    Article  Google Scholar 

  24. Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. et al., Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet, Oecologia, 1983, 57: 32–37.

    Article  Google Scholar 

  25. Hobson, K. A., Bairlein, F., Isotopic fractionation and turnover in captive Garden Warblers (Sylvia borin): Implications for delineating dietary and migratory associations in wild passerines, Can. J. Zool., 2003, 81: 1630–1635.

    Article  Google Scholar 

  26. Hobson, K. A., Schell, D. M., Renouf, D. et al., Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: Implications for dietary reconstructions involving marine mammals, Can. J. Fish. Aquat. Sci., 1996, 53: 528–533.

    Article  Google Scholar 

  27. DeNiro, M. J., Epstein, S., Influence of diet on the distribution of nitrogen isotopes in animals, Geochim. Cosmochim. Acta, 1981, 45: 341–351.

    Article  Google Scholar 

  28. Roth, J. D., Hobson, K. A., Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: Implications for dietary reconstruction, Can. J. Zool., 2000, 78: 848–852.

    Article  Google Scholar 

  29. Kurle, C. M., Stable-isotope ratios of blood components from captive northern fur seals (Callorhinus ursinus) and their diet: Applications for studying the foraging ecology of wild otariids, Can. J. Zool., 2002, 80: 902–909.

    Article  Google Scholar 

  30. Cormie, A. B., Schwartz, H. P., Gray, J., Determination of the hydrogen isotopic composition of bone collagen and correction for hydrogen exchange, Geochim. Cosmochim. Acta, 1994, 58: 365–375.

    Article  Google Scholar 

  31. Gannes, L. Z., O’Brien, D. M., del Rio, C. M., Stable isotopes in animal ecology: Assumptions, caveats, and a call for more laboratory experiments, Ecology, 1997, 78: 1271–1276.

    Article  Google Scholar 

  32. Zhang, X. L., Study on the diet of ancient people by analyzing bone elements and isotopes, Acta Anthropol. Sin. (in Chinese), 2003, 22(1): 75–84.

    Google Scholar 

  33. Chisholm, B. S., Nelson, D. E., Schwarcz, H. P., Stable-carbon isotopes as a measure of marine versus terrestrial protein in ancient diets, Science, 1982, 216: 1131–1132.

    Article  Google Scholar 

  34. Ben-David, M., Flynn, R. W., Schell, D. M., Annual and seasonal changes in diets of martens: evidence from stable isotope analysis, Oecologia, 1997, 111: 280–291.

    Article  Google Scholar 

  35. Schoeninger, M. J., DeNiro, M. J., Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals, Geochim. Cosmochim. Acta, 1984, 48: 625–639.

    Article  Google Scholar 

  36. Sponheimer, M., Grant, C. C., Ruiter, D. D. et al., Diets of impala from Kruger National Park: evidence from stable carbon isotopes, Koedoe, 2003, 46: 101–106.

    Google Scholar 

  37. Romanek, C. S., Gaines, K. F., Bryan, Jr. I. L. et al., Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers, Oecologia, 2001, 125: 584–594.

    Article  Google Scholar 

  38. Darimont, C. T., Reimchen, T. E., Intra-hair stable isotope analysis implies seasonal shift to salmon in gray wolf diet, Can. J. Zool., 2002, 80: 1638–1642.

    Article  Google Scholar 

  39. Cormie, A. B., Schwarcz, H. P., Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amount of C4 plant, Geochim. Cosmochim. Acta, 1996, 21: 4161–4166.

    Article  Google Scholar 

  40. Ramsay, M. A., Hobson, K. A., Polar bears make little use of terrestrial food web: Evidence from stable carbon isotope analysis, Oecologia, 1991, 86: 598–600.

    Article  Google Scholar 

  41. Cerling, T. E., Harris, J. M., Leakey, M. G., Browsing and grazing in elephants: The isotope record of modern and fossil proboscideans, Oecologia, 1999, 120: 364–374.

    Article  Google Scholar 

  42. Hilderbrand, G. V., Farly, S. D., Robbins, C. T. et al., Use of stable isotopes to determine diets of living and extinct bears, Can. J. Zool., 1996, 74: 2080–2088.

    Article  Google Scholar 

  43. Bocherens, H., Fizet, M., Mariotti, A., Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: Implications for Pleistocene bears, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1994, 107: 213–225.

    Article  Google Scholar 

  44. Saito, L., Johnson, B. M., Bartholow, J. et al., Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models, Ecosystems, 2001, 4: 105–125.

    Article  Google Scholar 

  45. Boutton, T. W., Arshad, M. A., Tieszen, L. L., Stable isotope analysis of termite food habits in East African grasslands, Oecologia, 1983, 59: 1–6.

    Article  Google Scholar 

  46. Magnusson, W. E., Arauujo, M. C., Cintra, R. et al., Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna, Oecologia, 1999, 119: 91–96.

    Google Scholar 

  47. Ostrom, P. H., Colunga-Garcia, M., Gage, S. H., Establishing pathways of energy flow for insect predators using stable isotope ratios: field and laboratory evidence, Oecologia, 1997, 109: 108–113.

    Article  Google Scholar 

  48. Peterson, B. J., Fry, B., Stable isotopes in ecosystem studies, Ann. Rev. Ecol. Syst., 1987, 18: 293–320.

    Article  Google Scholar 

  49. Post, D. M., Using stable isotopes to estimate trophic position: Models, methods, and assumptions, Ecology, 2002, 83: 703–718.

    Article  Google Scholar 

  50. Bearhop, H., Drucher, D., Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems, Int. J. Osteoarchaeol., 2003, 13: 46–53.

    Article  Google Scholar 

  51. McCutchan, Jr. J. H., William, M., Kendall, C. et al., Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, 2003, 102: 378–390.

    Article  Google Scholar 

  52. Olive, P. J. W., Pinnegar, J. K., Polunin, N. V. C. et al., Isotope trophic step fractionation: a dynamic equilibrium model, J. Anim. Ecol., 2003, 72: 608–617.

    Article  Google Scholar 

  53. Estep, M. F., Dabrowski, H., Tracing food webs with stable hydrogen isotopes, Science, 1980, 209: 1537–1538.

    Article  Google Scholar 

  54. Ehleringer, J. R., Rundel, P. W., Nagy, K. A., Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol., 1986, 1: 42–45.

    Article  Google Scholar 

  55. Fry, B., Jeng, W. L., Scalan, R. S. et al., Del13C food web analysis of a Texas sand dune community. Geochim. Cosmochim. Acta, 1978, 42: 1299–1302.

    Article  Google Scholar 

  56. Thompson, D. R., Lilliendahl, K., Solmundsson, J. et al., Trophic relationships among six species of Iceland seabirds as determined through stable isotope analysis, Condor, 1999, 101: 898–899.

    Article  Google Scholar 

  57. Struck, U., Altenbach, A. V., Gaulke, M. et al., Tracing the diet of the monitoe lizardVaranus mabitang by stable isotope analyses (15N,13C), Naturwissenschaften, 2002, 89: 470–473.

    Article  Google Scholar 

  58. Cai, D. L., Hong, X. G., Mao, X. H. et al., Preliminary studies on trophic structure of tidal zone in the Laoshan Bay by using carbon stable isotopes, Acta Oceanol. Sin. (in Chinese), 2001, 23(4): 41–47.

    Google Scholar 

  59. Cai, D. L., Wang, R., Bi, H. S., Trophic relationships in the Bohai ecosystem: preliminary investigation from δ13C analysis, Acta Ecol. Sin. (in Chinese), 2001, 21(8): 1354–1359.

    Google Scholar 

  60. Wassenaar, L. I., Hobson, K. A., A stable-isotope approach to delineate geographical catchment areas of avian migration monitoring stations in North America, Environ. Sci. Technol., 2001, 35: 1845–1850.

    Article  Google Scholar 

  61. Rubenstein, D. R., Chamberlain, C. P., Holmes, R. T. et al., Linking breeding and wintering ranges of a migratory songbird using stable isotopes, Science, 2002, 295: 1062–1065.

    Article  Google Scholar 

  62. Wassenaar, L. I., Hobson, K. A., Stable-carbon and hydrogen isotope ratios reveal breeding origins of red-winged blackbirds, Ecol. Appl., 2000, 10: 911–916.

    Article  Google Scholar 

  63. Alisauskas, R., Hobson, K. A., Determination of lesser snow goose diets and winter distribution using stable isotope analysis, J. Wildlife Manage., 1993, 57: 49–54.

    Article  Google Scholar 

  64. Marra, P. P., Hobson, K. A., Holmes, R. T., Linking winter and summer events in a migratory bird by using stable carbon isotopes, Science, 1998, 282: 1884–1886.

    Article  Google Scholar 

  65. Minami, H. M., Minagawa, M., Ogi, H., Changes in stable carbon and nitrogen isotope ratios in sooty and short-tailed shearwaters during their northward migration, Condor, 1995, 97: 565–574.

    Article  Google Scholar 

  66. Minami, H. M., Ogi, H., Determination of migratory dynamics of the sooty shearwater in the Pacific using stable carbon and nitrogen isotopic analysis, Mar. Ecol. Prog. Ser., 1997, 158: 249–256.

    Article  Google Scholar 

  67. Bearhop, S., Furness, R. W., Hilton, G. M. et al., A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material, Funct. Ecol., 2003, 17: 270–275.

    Article  Google Scholar 

  68. Hobson, K. A., Wassenaar, L. I., Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers, Oecologia, 1997, 109: 142–148.

    Article  Google Scholar 

  69. Chamberlain, C. P., Blum, J. D., Holmes, R. T. et al., The use of isotope tracers for identifying populations of migratory birds, Oecologia, 1997, 109: 132–141.

    Article  Google Scholar 

  70. Kelly, J. F., Atudorei, V., Sharp, Z. D. et al., Insights into Wilson’s Warbler migration from analyses of hydrogen stable isotope ratios, Oecologia, 2002, 130: 216–221.

    Google Scholar 

  71. Kelly, J. F., Finch, D. M., Tracking migrant songbirds with stable isotopes, Trends Ecol. Evol., 1998, 13: 48–49.

    Article  Google Scholar 

  72. Kelly, J. F., Smith, R., Finch, D. M. et al., Influence of summer biogeography on wood warbler stopover abundance, Condor, 1999, 101: 76–85.

    Article  Google Scholar 

  73. Wassenaar, L. I., Hobson, K. A., A stable-isotope approach to delineate geographical catchment areas of avian migration monitoring stations in North America. Environ. Sci. Technol., 2001, 35: 1845–1850.

    Article  Google Scholar 

  74. Lott, C. A., Meehan, T. D., Heath, J. A., Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: influence of marine prey base, Oecologia, 2003, 134: 505–510.

    Google Scholar 

  75. Hobson, K. A., Wassenaar, L. I., Milá, B. et al., Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community, Oecologia, 2003, 136: 302–308.

    Article  Google Scholar 

  76. Ambrose, S. H., DeNiro, M. J., The isotopic ecology of East African mammals, Oecologia, 1986, 69: 395–406.

    Article  Google Scholar 

  77. Schoeninger, M. J., Moore, J., Sept, J., Subsistence strategies of two “savanna” Chimpanzee populations: the stable isotope evidence, Amer. J. Primatol., 1999, 49: 297–314.

    Article  Google Scholar 

  78. Koch, P. L., Heisinger, J., Moss, C. et al., Isotopic tracing of change in diet and habitat use in African elephants, Science, 1995, 267: 1340–1343.

    Article  Google Scholar 

  79. Rubenstein, D. R., Hobson, K. A., From birds to butterflies: Animal movement patterns and stable isotopes, Trends Ecol. Evol., 2004, 19: 256–263.

    Article  Google Scholar 

  80. Schwarcz, H. P., Some theoretical aspects of isotope paleodiet studies, J. Archaeol. Sci., 1991, 18: 261–275.

    Article  Google Scholar 

  81. Gannes, L. Z., Martínez del Rio, C., Koch, P., Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology, Comp. Biochem. Physiol., 1998, 199A: 725–737.

    Google Scholar 

  82. Bearhop, S., Waldron, S., Votier, S. C. et al., Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers, Physiol. Biochem. Zool., 2002, 75: 451–458.

    Article  Google Scholar 

  83. Ponsard, S., Averbuch, P., Should growing and adult animals fed on the same diet show different δ15N values? Rapid Comm. Mass Spectrom., 1999, 13: 1305–1310.

    Article  Google Scholar 

  84. Vanderklift, M. A., Ponsard, S., Sources of variation in consumer diet δ15N enrichment: a meta-analysis, Oecologia, 2003, 136: 169–182.

    Article  Google Scholar 

  85. McClelland, J. W., Montoya, J. P., Trophic relationship and the nitrogen isotopic composition of amino acids in plankton, Ecology, 2002, 83: 2173–2180.

    Article  Google Scholar 

  86. Macfadden, B. J., Cerling, T., Harris, J. M. et al., Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth, Global Ecol. Biogeogr., 1999, 8: 137–149.

    Google Scholar 

  87. Cerling, T. E., Wang, Y., Quade, J., Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene, Nature, 1993, 361: 344–345.

    Article  Google Scholar 

  88. Cook, G. D., Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia, Aust. Ecol., 2001, 26: 630–636.

    Article  Google Scholar 

  89. Neilson, R., Robinson, D., Marriott, C. A., Above-ground grazing affects floristic composition and modifies soil trophic interactions, Soil Biol. Biochem., 2002, 34: 1507–1512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Lin.

About this article

Cite this article

Wang, J., Lin, G., Huang, J. et al. Applications of stable isotopes to study plant-animal relationships in terrestrial ecosystems. Chin.Sci.Bull. 49, 2339–2347 (2004). https://doi.org/10.1007/BF03183419

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183419

Keywords

trophic level

Navigation