Skip to main content
Log in

Zircon SHRIMP U-Pb dating on plagiogranite from Kuerti ophiolite in Altay, North Xinjiang

  • Reports
  • Published:
Chinese Science Bulletin

Abstract

Field observation, petrological and geochemical characteristics of plagiogranite from Kuerti ophiolite indicate a similar origin to those in shearing zones. It is derived from partial melting of amphibolite that is developed from gabbro within the ocean layer 3 shear zone by the low-angle shearing deformation during the oceanic crust migrating process. Zircon SHRIMP age of 372±19 Ma for the plagioganite from Kuerti ophiolite indicates that this ophiolite formed in the Devonian period and it also represented the time of extension of the Kuerti backarc basin that is relevant to the northwards subduction of the Paleo-Asian oceanic crust. Therefore, the northwards subduction of the Paleo-Asian Ocean beneath the Siberian Plate began in the early stage of the Late Paleozoic era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearce, J. A., Lippard, S. J., Roberts, S., Characteristics and tectonic significance of suprasubduction zone ophiolites, Marginal Basin Geology (eds. Kokelaar, B. P., Howells, M. F.), Geological Society Special Publication 16, 1984, 77–94.

  2. Stern, R. J., Bloomer, S. H., Lin, P. H. et al., Submarine arc volcanism in the southern Mariana Arc as an ophiolite analogue, Tectonicphysics, 1989, 168: 151–170.

    Article  Google Scholar 

  3. Coleman, R. G., Peterman, Z. E., Oceanic plagiogranite, Journal of Geophysical Research, 1975, 30: 1099–1108.

    Article  Google Scholar 

  4. Dixon, S., Rutherford, M. J., Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study, Earth and Planetary Science Letters, 1979, 45(1): 45–60.

    Article  Google Scholar 

  5. Pedersen, R. B., Malpas, J., The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway, Contributions to Mineralogy and Petrology, 1984, 88(1/2): 36–52.

    Article  Google Scholar 

  6. Flagler, P. A., Spray, J. G., Generation of plagiogranite by amphibolite anatexis in oceanic shear zones, Geology, 1991, 19(1): 70–73.

    Article  Google Scholar 

  7. Cox, J., Searle, M., Pedersen, R., The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates: field relationships, geochemistry and Sr/Nd isotope systematics, Contributions to Mineralogy and Petrology, 1999, 137(3): 267–287.

    Article  Google Scholar 

  8. Whitehead, J., Dunning, G. R., Spray, J. G., U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians, Geological Society of America Bulletin, 2000, 112(6): 915–928.

    Article  Google Scholar 

  9. Sorenson, S. S., Grossman, J. N., Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California, Geochimica et Cosmochimica Acta, 1989, 53(12): 3155–3177.

    Article  Google Scholar 

  10. Sorensen, S. S., Petrology of amphibolite-facies mafic and ultramafic rocks from Catalina schist, southern California: metamorphism and migmatization in a subduction zone metamorphic setting, Journal of Metamorphic Geology, 1988, 6(4): 405–435.

    Article  Google Scholar 

  11. Bebout, G. E., Barton, M. D., Metasomatism during subduction: products and possible paths in the Catalina schist, California, Chemical Geology, 1993, 108(1/4): 61–92.

    Article  Google Scholar 

  12. Defant, M. J., Richerson, P. M., De Boer, J. Z. et al., Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada Vocanic Complex, Panama, Journal of Petrology, 1991, 32(6): 1101–1142.

    Google Scholar 

  13. Martin, H., Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 1999, 46(3): 411–429.

    Article  Google Scholar 

  14. Scarrow, J. H., Pease, V., Fleutelot, C. et al., The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: An extension of the Cadomian arc? Precambrian Research, 2001, 110(1–4): 255–275.

    Article  Google Scholar 

  15. Searle, M. P., Malpas, J., The structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction, Transactions, Royal Society, Edinburgh Earth Sciences, 1980, 71: 247–262.

    Google Scholar 

  16. Pearce, J. A., High T/P metamorphism and granite genesis beneath ophiolite thrust sheets, Ofioliti, 1989, 14: 195–211.

    Google Scholar 

  17. Peters, T., Kamber, B. S., Peraluminous, potassium-rich granitoids in the Semail Ophiolite, Contributions to Mineralogy and Petrology, 1994, 118(3): 229–238.

    Article  Google Scholar 

  18. Floyd, P. A., Yaliniz, M. K., Goncuoglu, M. C., Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey, Lithos, 1998, 42(3–4): 225–241.

    Article  Google Scholar 

  19. Xu, J. F., Chen, F. R., Yu, X. Y. et al., Kuerti ophiolite in Altay area of north Xinjiang: magmatism of an Ancient back-arc basin: Acta Petrologica Et Mineralogica (in Chinese), 2001, 20(3): 344–352.

    Google Scholar 

  20. Liu, Y., Liu, H. C., Li, X. H., Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS, Geochimica (in Chinese), 1996, 25(6): 552–558.

    Google Scholar 

  21. Compston, W., Williams, I. S., Meyer, C., U-Pb geochronology of zircons from Lunar Breccia 73217 using a sensitive high mass resolution ion microprobe, Journal of Geophysical Research, 1984, 89(B): 525–534.

    Article  Google Scholar 

  22. Claesson, S., Vetrin, V., Bayanova, T., et al., U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic, Lithos, 2000, 51(1–2): 95–108.

    Article  Google Scholar 

  23. He, G. Q., Li, M. S., Study on Paleozoic Ophiolites and Their Tectonic Significance in Hinggan-Mongolian-north Xinjiang and Adjacent Area, Study on Ophiolites and Geodynamics (ed. Zhang, Q.) (in Chinese), Beijing: Geological Publishing House, 1996, 104–107.

    Google Scholar 

  24. Tang, K. D., Shao, J. A., Some Characteristics of Ophiolites and Ancient Ocean Evolution in Paleo-Asian Oceanic Area, Study on Ophiolites and Geodynamics (ed. Zhang, Q.) (in Chinese), Beijing: Geological Publishing House, 1996, 108–111.

    Google Scholar 

  25. Xiao, X. C., Tang, Y. Q., Li, J. Y. et al., Tectonic Evolution of the Northern Xinjiang and Its Adjacent Region (in Chinese), Beijing: Geological Publishing House, 1992, 1–180.

    Google Scholar 

  26. Niu, H. C., Xu, J. F., Yu, X. Y. et al., Discovery of Mg-rich volcanic rock series in Western Altay area, Xinjiang and its geologic significance, Chinese Science Bulletin, 1999, 44(18): 1685–1687.

    Article  Google Scholar 

  27. Graupner, T., Kempe, U., Dombon, E. et al., Fluid regime and ore formation in the tungsten (-yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten-tin ore systems, Chemical Geology, 1999, 154(1–4): 21–58.

    Article  Google Scholar 

  28. Liu, W., Liu, C. Q., Masuda, A., Complex trace element effects of mixing-fractional crystallization composite processes: applications to the Alaer granite pluton, Altay Mountains, Xinjiang, northwestern China, Chemical Geology, 1997, 135(1–2): 103–124.

    Google Scholar 

  29. Yu, X. Y., Mei, H. J., Jiang, F. Z. et al., Ereqisi Volcanic Rocks and Their Mineralization (in Chinese), Beijing: Science Publishing House, 1995, 95–243.

    Google Scholar 

  30. Han, B. F., Wang, S. G., John, B. M. et al., Depleted-mantle source for the Ulungur river A-type granites from north Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth, Chemical Geology, 1997, 138(3–4): 135–159.

    Article  Google Scholar 

  31. Helz, R. T., Phase relations of basalts in their melting range at PH 2 O = 5 kb as a function of oxygen fugacity, part I, Mafic phases, Journal of Petrology, 1973, 14(2): 249–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixiang Zhang.

About this article

Cite this article

Zhang, H., Niu, H., Terada, K. et al. Zircon SHRIMP U-Pb dating on plagiogranite from Kuerti ophiolite in Altay, North Xinjiang. Chin. Sci. Bull. 48, 2231–2235 (2003). https://doi.org/10.1007/BF03182858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03182858

Keywords

Navigation