Skip to main content
Log in

The synthesis of spherical calcium carbonate composite in amphiphilic PS-b-PAA solution and its thermal dynamic characteristic

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Spherical calcium carbonate composite is synthesized in the solution of amphiphilic block copolymer of polystyrene(PS) and poly(acrylic acid)(PAA). SEM and XRD measurements show that the diameter of the particulates decreases with the augment of the PS-b-PAA concentration, crystalline in the composite is calcite and its morphology as well as the structure is changed too. TG-DTA together with IR analysis is applied to investigating the thermal dynamic behavior of the composite. The results show that the composite is mainly composed of two phases, that is, the nano-crystalline calcium carbonate and the PS-b-PA-Ca composites. PS phase decomposes first with a large heat release at about 330 °C. However, the PAA chains have relatively high thermal stability, probably due to the structural Ca-O bond, and decomposes at above 400 °C. Matching opinions are used to explain the possible reasons for the regular as well as the particular characteristics of the composite corresponding to a certain copolymer concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenberg, J., Tkachenko, A., Weiner, S. et al., Calcitic microlenses as part of the photoreceptor system in brittlestars, Nature, 2001, 412: 819–822.

    Article  Google Scholar 

  2. Falini, G., Albeck, S., Weiner, S. et al., Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science, 1996, 271(5245): 67–69.

    Article  Google Scholar 

  3. Smith, B. L., Schaffer, T. E., Viani, M. et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature, 1999, 399(6738): 761–763.

    Article  Google Scholar 

  4. Heywood, B. R., Mann, S., Template-directed nucleation and growth of inorganic materials, Adv. Mater., 1994, 6: 9–20.

    Article  Google Scholar 

  5. Aizenberg, J., Black, A. J., Whitesides, G. M., Control of crystal nucleation by patterned self-assembled monolayers, Nature, 1999, 398(6727): 495–498.

    Article  Google Scholar 

  6. D’Souza, S. M., Alexander, C., Carr, S. W. et al., Directed nucleation of calcite at a crystal-imprinted polymer surface, Nature, 1999, 398(6725): 312–316.

    Article  Google Scholar 

  7. Falini, G., Fermani, S., Gazzano, M. et al., Biomimetic crystallization of calcium carbonate polymorphs by means of collagenous matrices, Chem. Eur. J., 1997, 3(11): 1807–1814.

    Article  Google Scholar 

  8. DeOliveira, D. B., Laursen, R. A., Control of calcite crystal morphology by a peptide designed to bind to a specific surface, J. Am. Chem. Soc., 1997, 119(44): 10627–10631.

    Article  Google Scholar 

  9. Colfen, H., Qi, L., A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer, Chem. Eur. J., 2001, 7: 106–116.

    Article  Google Scholar 

  10. Colfen, H., Antonietti, M., Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers, Langmuir, 1998, 14: 582–589.

    Article  Google Scholar 

  11. Zhang, L. F., Eisenberg, A., Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers, Science, 1995, 268: 1728–1731.

    Article  Google Scholar 

  12. Moffitt, M., Mcmahon, L., Pessel, V. et al., Size control of nanoparticles in semiconductor-polymer composites. 2. Control via sizes of spherical ionic microdomains in styrene-based diblock ionomers, Chem. Mater., 1995, 7: 1185–1192.

    Article  Google Scholar 

  13. Yue, L. H., Shui, M., Xu, Z. D. et al., The crystal structure of ultra fine CaCO3 and its thermal decomposition, Chemical Journal of Chinese University, 2000, 21(10): 1555–1559.

    Google Scholar 

  14. Mann, S., Heywood, B. R., Rajam, S. et al., Controlled crystallization of CaCO3 under steatic-acid monolayers, Nature, 1988, 334(6184): 692–695.

    Article  Google Scholar 

  15. Amir, B., Dong, J. A., Anna, L. et al., Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organic-inorganic interface, Science, 1995, 269: 515–518.

    Article  Google Scholar 

  16. Lara, A. E., Andrew, D. H., At the interface of organic and inorganic chemistry: bioinspired sythesis of composite materials, Chem. Mater., 2001, 13: 3227–3235.

    Article  Google Scholar 

  17. Yu, S. H., Colfen, H., Hartmann, J. et al., Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers, Adv. Funct. Mater., 2002, 12(8): 541–545.

    Article  Google Scholar 

  18. Mann, S., Didymus, J. M., Sanderson, N. P. et al., Morphological influence of functionalized and non-functionalized α, ω-dicarboxylates on calcite crystallization, J. Chem. Soc. Faraday, 1990, 86(10): 1873–1880.

    Article  Google Scholar 

  19. Zhang, J., Gonsalves, K. E., Synthesis of calcium carbonate-chitosan composites via biomimetic processing, J. Applied Polymer Science, 1995, 56: 687–695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhai Yue.

About this article

Cite this article

Yue, L., Jin, D. The synthesis of spherical calcium carbonate composite in amphiphilic PS-b-PAA solution and its thermal dynamic characteristic. Chin.Sci.Bull. 49, 235–239 (2004). https://doi.org/10.1007/BF03182804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03182804

Keywords

Navigation