Chinese Science Bulletin

, Volume 49, Issue 3, pp 220–224 | Cite as

Rapid monotectic solidification during free fall in a drop tube

  • Haipeng Wang
  • Chongde Cao
  • Bingbo Wei


Droplets of Ni-31.4%Pb monotectic alloy with different sizes are rapidly solidified during free fall in a drop tube. The theoretical calculations indicate that the undercooling was achieved before solidification exponentially depends on droplet diameter. The maximum undercooling of 241 K (0.15Tm) is obtained in the experiments. With the increase of undercooling, the volume fraction of monotectic cells increases, and the L2(Pb) grains are refined. Calculations of the nucleation rates of L2(Pb) and α-Ni phases indicate that L2(Pb) phase acts as the leading nucleation phase during the monotectic transformation.


monotectic solidification high undercooling containerless processing low gravity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ungar, L. H., Bennett, M. J., Brown, R. A., The effects of heat transfer and solid diffusivity, Phys. Rev. B, 1985, 31(9): 5923–5930.CrossRefGoogle Scholar
  2. 2.
    Conti, M., Planar isothermal solidification from an undercooled melt: Unsteady solute segregation studied with the phase-field model. Phys Rev E, 1997, 55(1): 701–703.CrossRefGoogle Scholar
  3. 3.
    Singh, R. N., Sommer, F., Thermodynamic investigation of viscosity and diffusion in binary liquid alloys, Phys. and Chem. of Liquids, 1998, 36(1): 17–28.CrossRefGoogle Scholar
  4. 4.
    Blum, V., Hammer, L., Schmidt, Ch. et al., Segregation in strongly ordering compounds: A key role of constitutional defects, Phys. Rev. Lett., 2002, 89(26): 266102–4.CrossRefGoogle Scholar
  5. 5.
    Shin, B., Lin, A., Lappo, K. et al., Initiation and evolution of phase separation in heteroepitaxial InAlAs films, Appl. Phys. Lett., 2002, 80(18): 3292–3294.CrossRefGoogle Scholar
  6. 6.
    Creuze, J., Berthier, F., Tetot, R. et al., Wetting and structural transition induced by segregation at grain boundaries: A Monte Carlo study, Phys. Rev. Lett., 2001, 86(25): 5735–5738.CrossRefGoogle Scholar
  7. 7.
    Andrews, J. B., Hayes, L. J., Arikawa, Y. et al., Microgravity solidification of immiscible alloys, Materials Science Forum, 1996, 215: 59–66.CrossRefGoogle Scholar
  8. 8.
    Dudowicz, J., Freed, K. F., Douglas, J. F., Beyond Flory-Huggins theory: New classes of blend miscibility associated with monomer structural asymmetry, Phys. Rev. Lett., 2002, 88(9): 955031–955034CrossRefGoogle Scholar
  9. 9.
    Neumann, H., Plevachuk, Y., Allenstein, F., Investigation of Marangoni convection in monotectic melts by resistance measurements, Materials Science and Engineering A, 2003, 361: 155–164.CrossRefGoogle Scholar
  10. 10.
    Dong, C., Wei, B., Monotectic structures of undercooled Cu-37.4%Pb alloy, J. Mater. Sci. Lett., 1996, 15(11): 970–973.CrossRefGoogle Scholar
  11. 11.
    Smyrnaios, D. N., Pelekasis, N. A., Tsamopoulos, J. A., Laminar boundary layer flow of saturated vapor and its condensate over a horizontal tube, Phys. Fluid, 2002, 14(6): 1945–1957.CrossRefGoogle Scholar
  12. 12.
    Luhmann, J., Lichtenberg, S., Langenscheidt, O. et al., Determination of HID electrode falls in a model lamp II: Langmuir-probe measurements, J. Phys. D: Appl. Phys., 2002, 35(14): 1631.CrossRefGoogle Scholar
  13. 13.
    Tournier, S., Vinet, B., Pasturel, A. et al., Undercooling-induced metastable A15 phase in the Re-W system from drop-tube processing, Phys. Rev. B, 1998 57(6): 3340–3344.CrossRefGoogle Scholar
  14. 14.
    Turnbull, D., Formation of crystal nuclei in liquid metals, J. Appl. Phys., 1950, 21(2): 1022–1028.CrossRefGoogle Scholar
  15. 15.
    Rogers, J. R., Davis, R. H., Modelling of collision and coalescense of droplets during microgravity processing of Zn-Bi immscible alloys, Metall Trans. A, 1990, 21: 59–68.Google Scholar
  16. 16.
    Lee, E., Ahn, S., Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming, Acta Metall Mater., 1994, 42(9): 3231–3243.CrossRefGoogle Scholar
  17. 17.
    Battle, R. E., Bryan, W. L., Kisner, R. A. et al., Reactor protection system design using application-specific integrated circuits, Int. Mater. Rev., 1992, 35: 389–396.Google Scholar
  18. 18.
    Elmer, J. W., Aziz, M. J., Tanner, L. E. et al., Formation of bands of ultrafine beryllium particles during rapid solidification of Al-Be alloys: Modeling and direct observations, Acta Metall Mater., 1994, 42(4): 1065–1080.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Haipeng Wang
    • 1
  • Chongde Cao
    • 1
  • Bingbo Wei
    • 1
  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations