, Volume 47, Issue 2, pp 61–76 | Cite as

The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): Manipulating insect behaviour through odour and visual cues

Review article


The use of sensory attractants is central to most animal-mediated pollination and seed dispersal interactions. Approximately half the 73 species of mosses’ in the family Splachnaceae are entomophilous (have their spores dispersed by flies) and are coprophilous (grow on feces and carrion). When mature, entomophilous species often produce brightly coloured, scented sporophytes which, for several species, have been shown to attract flies. In a number of cases, sporophyte colours and odours, as well as the flies that visit them, have been shown to be species-specific, suggesting that the mosses co-exist by signal diversification, just as flowering plants are thought to reduce competition for pollinators. Analyses of scent chemistry identified an odour contrast between generations; gametophytes were either unscented or weakly scented in most species, whereas sporophyte odours were universally stronger per unit mass and much more chemically complex. Sporophyte odours of North and South American species sampled were both complex and diverse, with an apparent inverse relationship between the size and showiness of the apophysis and its odour complexity. Furthermore, phylogenetic evidence suggests that fly dispersal of spores through visual and olfactory signals has evolved multiple times in the Splachnaceae and that modifications of sporophyte morphology may have followed, rather than triggered, the transitions to coprophily and entomophily. We review the ecological and evolutionary aspects ofentomophily, with particular emphasis on the chemistry of sporophyte odours and the means by which they mimic decaying organic matter.


Directed dispersal Diptera key innovations mosses sensory signals Splachnaceae spore dispersal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W.R. 1979. Floral conservatism in neotropical Malpighiaceae.Biotropica 11: 219–223.CrossRefGoogle Scholar
  2. Annentano, T.V. and Caponetti, J.D. 1972. The effect of pH on the growth of protonema ofTetraplodon mnioides and Funaria hygrometrica.The Bryologist 75: 147–153.CrossRefGoogle Scholar
  3. Bai, X.L. and Tan, B.C. 2000.Tayloria rudimenta (Musci, Splachnaceae), a new speciesfrom Nintgxia Huizu autonomous regionof China.Bryologie 21: 3–5.CrossRefGoogle Scholar
  4. Banziger, H., Sun, H., and Luo, Y.-B. 2005. Pollination of a slippery lady slipper orchid in south-west China:Cypripedium guttatum (Orchidaceae).Botanical Journal of the Linnean Society 148: 251–264.CrossRefGoogle Scholar
  5. Bequaert, J. 1921. On the dispersal by flies of the spores of certain mosses of the family Splachnaceae.The Bryologist 24: 1–4.Google Scholar
  6. Bickel, D.J. 1985. A revision of the NearcticMedetera (Diptera: Dolichopodidae).U.S. Department of Agriculture. Technical Bulletin 1692: 1–109.Google Scholar
  7. Borg-Karlson, A.K., Englund, F.O., and Unelius, C.R. 1994. Dimethyl oligosulphides, major volatiles released fromSauromatum guttatum and Phallus impudicus.Phytochemistry 35: 321–323.CrossRefGoogle Scholar
  8. Brotherus, V.F. 1918.Moseniella, un nouveau genre des mousses du Brésil.Arkiv för Botanik utfivet av K. Svenska Vetenskapsakademien 15: 1–3.Google Scholar
  9. Brotherus, V.F. 1924. Splachnaceae.Die natürlichen Pflanzenfamilien 10: 333–343.Google Scholar
  10. Bryhn, N. 1897. Beobachtungen über das Ausstreuen der Sporen bei den Splachnaceen.Biologisches Centralblatt 17: 48–55.Google Scholar
  11. Buchmann, S.L. 1988. The ecology of oil flowers and their bees.Annual Review ofEcology and Systematics 18: 343–369.CrossRefGoogle Scholar
  12. Cameron, R.G. and Troilo, D. 1982. Fly-mediated spore dispersal inSplachnum ampullaceum (Musci).Michigan Botanist 21: 5965.Google Scholar
  13. Cameron, R.G. and Wyatt, R. 1986. Substrate restriction in entomophilous Splachnaceae: role of spore dispersal.The Bryologist 89: 279–284.CrossRefGoogle Scholar
  14. Cameron, R.G. and Wyatt, R. 1989. Substrate restriction in entomophilous Splachnaceae: II. Effects of hydrogen ion concentration on establishment of gametophytes.The Bryologist 92: 397–404.CrossRefGoogle Scholar
  15. Crosby, M.R., Magill, R.E., Allen, B., and He, S. 1999. A Checklist of the Mosses.Missouri Botanical Garden.Google Scholar
  16. Dafni, A. 1984. Mimicry and deception in pollination.Annual Review ofEcology and Systematics 15: 259–278.CrossRefGoogle Scholar
  17. Dafni, A., Kevan, P.G., and Husband, B.C., eds. 2005.Practical Pollination Biology. Enviroquest, Cambridge, Canada.Google Scholar
  18. Demidova, E.E. and Filin, V.R. 1994. False columella and spore release inTetraplodon angustatus (Hedw.) Bruch et Schimp. in B.S.G. andT. mnioides (Hedw.) Bruch et Schimp. in B.S.G. (Musci. Splachnaceae).Arctoa 3: 1–6.Google Scholar
  19. Dobson, H.E.M., Raguso, R.A., Knudsen, J.T., and Ayasse, M. 2005. Scent as an attractant. In:Practical Pollination Biology. Dafni, A., Kevan, P.G., and Husband, B.C., eds. Enviroquest, Cambridge, Canada, pp. 197–230.Google Scholar
  20. Dodson, C., Dressler, R., Hills, H., Adams, R., and Williams, N. 1969. Biologically active compounds in orchid fragrances.Science 164: 1243–1249.CrossRefPubMedGoogle Scholar
  21. Donoghue, M.J., Ree, R.H., and Baum, D.A. 1998. Phylogeny and the evolution of flower symmetry in the Asteridae.Trends in Plant Science 3: 311–317.CrossRefGoogle Scholar
  22. Fife, A. and Goffinet, B. 2003. The identity ofTayloria maidenii.The Bryologist 106: 309–310.CrossRefGoogle Scholar
  23. Fife, A. and Dalton, J. 2005. A reconsideration ofPleurophascum (Musci: Pleurophascaceae) and specific status for a New Zealand endemic,Pleurophascum ovalifolium stat. et nom. nov.New Zealand Journal of Botany 43: 871–884.CrossRefGoogle Scholar
  24. Forget, P.M. and Vander Wall, S.B. 2001. Scatter-hoarding rodents and marsupials: convergent evolution on diverging continents.Trends in Ecology & Evolution 16: 65–67.CrossRefGoogle Scholar
  25. Givnish, T. and Sytsma, K. 1997.Molecular Evolution and Adaptive Radiations. Cambridge University Press, Cambridge, UK.Google Scholar
  26. Goffinet, B., Buck, W.R., Massardo, P., and Rozzi, R. 2006.The Miniature Forests of Cape Horn. Universidad de Magallanes, Punta Arenas, Chile.Google Scholar
  27. Goffinet, B. and Shaw, A.J. 2002. Independent ongins of cleistocarpy in the Splachnaceae: analyses of cpDNA sequences reveals polyphyly of the Voitioideae.Systematic Botany 27: 203–208.Google Scholar
  28. Goffinet, B., Shaw, A.J., and Cox, C. 2004. Phylogenetic inferences in the dung moss family Splachnaceae from analysis of cpDNA sequence data and implications for the evolution of entomophily.American Journal of Botany 91: 748–759.CrossRefGoogle Scholar
  29. Grison-Pigé, L., Hossaert-McKey, M., Greeff, J.M., and Bessiere, J.M. 2002. Fig volatile compounds — a first comparative study.Phytochemistry 61: 61–71.CrossRefPubMedGoogle Scholar
  30. Handel, S.N. and Beattie, A.J. 1990. Seed dispersal by ants.Scientific American 262: 76–83.CrossRefGoogle Scholar
  31. Herrera, C.M. and Pellmyr, O., eds. 2002.Plant-Animal Interactions: An Evolutionary Approach. Blackwell, OxfordGoogle Scholar
  32. Hodges, S.A. 1997. Floral nectar spurs and diversification.International Journal of Plant Science 158: S81-S88.CrossRefGoogle Scholar
  33. Hughes, L. and Westoby, M. 1992. Fate of seeds adapted for dispersal by ants in Australian sclerophyll vegetation.Ecology 73: 1285–1299.CrossRefGoogle Scholar
  34. Janzen, D.H. 1983. Dispersal of seeds by vertebrate guts. In:Coevolution. Futuyrna, D.J. and M. Slatkin, M., eds. Sinauer Associates Inc., Sunderland, pp. 232–262.Google Scholar
  35. Jofre, J.P. 2007. Tayloria dubyi: fenología y dispersión de esporas en una especie endemica de musgo de turbera en la Reserva de Biosfera Cabo de Homos.Abstract III Reunión Binacional de Ecología.Google Scholar
  36. Johnson, S.D. and Steiner, K.E. 2000. Generalization versus specialization in plant pollination systems.Trends in Ecology & Evolution 15: 140–143.CrossRefGoogle Scholar
  37. Jürgens, A., Dötterl, S., and Meve, U. 2006. The chemical nature of fetid floral odors in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae).New Phytologist 172: 452–468.CrossRefPubMedGoogle Scholar
  38. Kaiser, W.M. 1993.The Scent of Orchids: Olfactory and Chemical Investigations. Elsevier, Amsterdam.Google Scholar
  39. Keams, C.A. and Inouye, D.W. 1993.Techniques for Pollination Biologists. University of Colorado Press, Boulder, CO.Google Scholar
  40. Kevan, P.G. and Baker, H.G. 1983. Insects as flower visitors and pollinators.Annual Review of Ecology and Systematics 28: 407–453.Google Scholar
  41. Kite, G.C. 1995. The floral odor ofArum maculatum.Biochemical Systematics and Ecology 23: 452–468.CrossRefGoogle Scholar
  42. Koponen, A. 1978. The peristome and spores in Splachnaceae and their evolutionary and systematic significance.Bryophytorum Bibliotheca 13: 535–567.Google Scholar
  43. Koponen, A. 1979. Entomophily and the classification of the Splachnaceae (Musci).Abstracta Botanica 5 (Supplement): 61.Google Scholar
  44. Koponen, A. 1982. The classification of the Splachnaceae.Nova Hedwigia Beiheft 71: 237–245.Google Scholar
  45. Koponen, A. 1983. Studies on the generic concept in the classification of the moss family Splachnaceae.Publications from the Department of Botany. University of Helsinki 11: 1–48.Google Scholar
  46. Koponen, A. 1990. Entomophily in the Splachnaceae.Botanical Journal of the Linnean Society 104: 115–127.CrossRefGoogle Scholar
  47. Koponen, A. and Koponen, T. 1977. Evidence of entomophily in Splachnaceae (Bryophyta).Bryophytorum Bibilotheca 13: 569–577.Google Scholar
  48. Larson, B.M.H., Kevan, P.G., and Inouye, D.W. 2001. Flies and flowers: taxonomic diversity of anthophiles and pollinators.The Canadian Entomologist 133: 439–465.CrossRefGoogle Scholar
  49. Levey, D.J., Silva, W.R., and Galetti, M. 2002.Seed Dispersal and Frugivory: Ecology. Evolution. and Conservation. CABI Publishing, Wallingford.Google Scholar
  50. Levin, R.A., McDade, L.A., and Raguso, R.A. 2003. The systematic utility of floral and vegetative fragrance in two genera of Nyctaginaceae.Systematic Biology 52: 334–351.CrossRefPubMedGoogle Scholar
  51. Li, P., Luo, Y.B., Bernhardt, P., Yang, X.Q., and Kou, Y. 2006. Deceptive pollination of the Lady’s SlipperCypripedium tibeticum (Orchidaceae).Plant Systematics and Evolution 262: 53–63.CrossRefGoogle Scholar
  52. Marino, P.C. 1988a. Coexistence on divided habitats: mosses in the family Splachnaceae.Annales Zoologici Fennici 25: 89–98.Google Scholar
  53. Marino, P.C. 1988b. The North American distribution of the circumboreal species ofSplachnum and Tetraplodon.The Bryologist 91: 161–166.CrossRefGoogle Scholar
  54. Marino, P.C. 1991a. Competition between mosses (Splachnaceae) in patchy habitats.Journal of Ecology 79: 1031–1046.CrossRefGoogle Scholar
  55. Marino, P.C. 1991b. Dispersal and coexistence of mosses (Splachnaceae) in patchy habitats.Journal of Ecology 79: 1047–1060.CrossRefGoogle Scholar
  56. Marino, P.C. 1997. Competition, dispersal and coexistence of Splachnaceae in patchy habitats. In:Advances in Bryology. Longton, R.A., ed. J. Cramer, Berlin.Google Scholar
  57. Marino, P.C., Raguso, R.A., and Goffinet, B. In prep. Chemical communication, signal mimicry and exploitation of flies bySplachnum ampullaceum.Google Scholar
  58. McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M., eds. 1981.Manual of the Nearctic Diptera. Volume 1, 2. Agriculture Canada Monograph.Google Scholar
  59. Nathan, R. and Muller-Landau, H.C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment.Trends in Ecology & Evolution 15: 278–285.CrossRefGoogle Scholar
  60. Olesen, J.M., Bascornpte, J., Dupont, Y., and Jordano, P. 2007. The modularity of pollination networks.Proceedings National Academy of Science 104: 19891–19896.CrossRefGoogle Scholar
  61. Patiño, S., Grace, J., and Bänziger, H. 2000. Endothermy by flowers ofRhizanthes lowii (Rafflesiaceae).Oecologia 124: 149–155.CrossRefGoogle Scholar
  62. Proctor, M., Yeo, P., and Lack, A. 1996.The Natural History of Pollination. Timber Press, Portland, Oregon.Google Scholar
  63. Pyysalo, H., Koponen, A., and Koponen, T. 1978. Studies on entomophily in Splachnaceae (Musci). 1. Volatile compounds in the sporophytes.Annales Botanici Fennici 15: 293–296.Google Scholar
  64. Pyysalo, H., Koponen, A., and Koponen, T. 1983. Studies on entomophily in Splachnaceae (Musci). II. Volatile compounds in the hypophysis.Annales Botanici Fennici 20: 335–338.Google Scholar
  65. Raguso, R.A. 2008. Ecology and evolution of floral fragrances.Annual Review of Ecology, Evolution, and Systematics 39: in press.Google Scholar
  66. Raguso, R.A., Levin, R.A., Foose, S.E., Holmberg, M.W., and McDade, L.A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” inNicotiana.Phytochemistry 63: 265–284.CrossRefPubMedGoogle Scholar
  67. Raguso, R.A. and Pellmyr, O. 1998. Dynamic headspace analysis of floral volatiles: a comparison of methods.Oikos 81: 238–254.CrossRefGoogle Scholar
  68. Roy, B.A. and Raguso, R.A. 1997. Olfactory versus visual cues in a floral mimicry system.Oecologia 109: 1432–1939.CrossRefGoogle Scholar
  69. Roy, B.A. and Widmer, A. 1999. Floral mimicry: a fascinating yet poorly understood phenomenon.Trends in Plant Science 4: 325–330.CrossRefPubMedGoogle Scholar
  70. Rozkosny, R. 1984.The Sciomyzidae (Diptera) of Fennoscandia and Denmark. E.J. Brill/Scandinavian Science Press Ltd., Leiden, Copenhagen.Google Scholar
  71. Salzmann, C.C., Brown, A., and Schiestl, F.P. 2006. Floral scent emission and pollination syndromes: evolutionary changes from food to sexual deception.International Journal of Plant Science 167: 1197–1204.CrossRefGoogle Scholar
  72. Schaefer, H.M., Schaefer, V., and Levey, D.J. 2004. How plantanimal interactions signal new insights in communication.Trends in Ecology & Evolution 19: 577–584.CrossRefGoogle Scholar
  73. Schiestl, F.P. 2005. On the success of a swindle: pollination by deception in orchids.Naturwissenschaften 92: 1432–1904.CrossRefGoogle Scholar
  74. Sleeman, D.P., Jones, P., and Cronin, J.N. 1997. Investigations of an association between the stinkhorn fungus and badger setts.Journal of Natural History 31: 983–992.CrossRefGoogle Scholar
  75. Sorensen, A.E. 1986. Seed dispersal by adhesion.Annual Review of Ecology and Systematics 17: 443–463.CrossRefGoogle Scholar
  76. Stebbins, G.L. 1970. Adaptive radiation of reproductive characteristics in angiosperms. I: Pollination mechanisms.Annual Review of Ecology and Systematics 1: 307–326.CrossRefGoogle Scholar
  77. Stensrnyr, M., Urru, J., Collu, J., Celander, M., Hansson, B.S., and Angioy, A.M. 2002. Rotting smell of dead horse arum florets.Nature 429: 625–626.CrossRefGoogle Scholar
  78. Troilo, D. and Cameron, R.G. 1981. Comparative behavior of Pyrellia cyanicolor (Diptera: Muscidae) on the mossSplachnum ampullaceum and on substrates of nutritional value.Great Lakes Entomologist 14: 191–195.Google Scholar
  79. Tuno, N. 1998. Spore dispersal ofDictyophora fungi (Phallaceae).Ecological Research 13: 7–15.CrossRefGoogle Scholar
  80. Ulrich, H. 2005. Predation by adult Dolichopodidae (Diptera): a review of literature with an annotated prey-predator list.Studia Dipterologica 11: 1–60.Google Scholar
  81. Vander Wall, S.B., Borchert, M.I., and Gworek, J.R. 2006. Secondary dispersal of bigcone Douglas-fir (Pseudotsuga macrocarpa) seeds.Acta Oecologica 30: 100–106.CrossRefGoogle Scholar
  82. Vitt, D.H. 1981. Adaptive modes of the moss sporophyte.The Bryologist 84: 166–186.CrossRefGoogle Scholar
  83. Vitt, D.H. 1984. Classification of the Bryopsida. In:New Manual of Bryology. Vol. 2. Schuster, R.M., ed. Hattori Botanical Laboratory, Nichinan, Japan, pp. 696–759.Google Scholar
  84. Wenny, D.G. 2001. Advantages of seed dispersal: a re-evalution of directed dispersal.Evolutionary Ecology Research 3: 51–74.Google Scholar
  85. Wenny, D.G. and Levey, D.J. 1998. Directed seed dispersal by bellbirds in a tropical cloud forest.Proceedings National Academy of Science 95: 6204–6207.CrossRefGoogle Scholar
  86. Wettstein, F.V. 1921. Splachnaceen Studien. I. Entomophilie und Spaltöffnungsapparat.Oesterreich Botanik Zeitschrift 70: 65–77.CrossRefGoogle Scholar
  87. Whittle, C.L., Bowyer, R.T., Clausen, T.P., and Duffy, L.K. 2000. Putative pheromones in urine of rutting male moose (Alces alces): Evolution of honest advertisement?Journal of Chemical Ecology 26: 2747–2762.CrossRefGoogle Scholar
  88. Zoller, H., Lenzin, H., and Erhardt, A. 2002. Pollination and breeding system ofEritrichium nanum (Boraginaceae).Plant Systematics and Evolution 233: 1–14.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of BiologyMemorial UniversitySt. John’sCanada
  2. 2.Department of Neurobiology and Behavior, Seeley G. Mudd HallCornell UniversityIthacaUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsUSA

Personalised recommendations