Skip to main content
Log in

Deciding bisimilarity isP-complete

  • Published:
Formal Aspects of Computing

Abstract

In finite labelled transition systems the problems of deciding strong bisimilarity, observation equivalence and observation congruence areP-complete under many—oneNC-reducibility. As a consequence, algorithms for automated analysis of finite state systems based on bisimulation seem to be inherently sequential in the following sense: the design of anNC algorithm to solve any of these problems will require an algorithmic breakthrough, which is exceedingly hard to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AHU75] Aho, A., Hopcroft, J. and Ullman, J.:The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975.

  • [All89] Allender, E.:P-Uniform Circuit Complexity.J. ACM,36(4), 912–928 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  • [ABG91] Álvarez, c., Balcázar, J.L., Gabarró, J. and Sántha, M.: Parallel Complexity in the Design and Analysis of Concurrent Systems. In:Paral1el Architectures and Languages Europe PARLE’91, Lecture Notes in Computer Science 505 Springer-Verlag pp. 288–303, 1991.

  • [BDG88] Balcázar, J.L., Díaz, J. and Gabarró, J.:Structural Complexity I. Springer-Verlag, 1988.

  • [BDG90] Balcázar, J.L., Díaz, J. and Gabarró, J.:Structural Complexity II. Springer-Verlag, 1990.

  • [BIS90] Barrington, D.A.M., Immerman, N. and Straubing, H.: On Uniformity Within NC,Journal of Computer and System Sciences,41, 274–306 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  • [GiR88] Gibbons, A. and Rytter, W.:Efficient Paral1el Algorithms. Cambridge University Press, 1988.

  • [CPS89] Cleaveland, R., Parrows, J. and Steffen B.: The Concurrency Workbench. In:Automatic Verification Methods for Finite State Systems. Lecture Notes in Computer Science 407, Springer-Verlag, pp. 24–37, 1989.

  • [HoR84] Hoover, H.J. and Ruzzo, W.L.: A Compendium of Problems Complete forP. Manuscript, 1984.

  • [KaS90] Kanellakis, P.C. and Smolka, S. A.: CCS Expressions, Finite State Processes, and three Problems of Equivalence.Information and Computation,86, 202–241 (1990).

    Article  MathSciNet  Google Scholar 

  • [KaR90] Karp, R. and Ramachandran, V.: Parallel Algorithms for Shared-Memory Machines. In:Handbook of Theoretical Computer Science, Volume A. North-Holland, pp. 869–941, 1990.

  • [Kel76] Keller, R.M.: Formal Verification of Parallel Programs.C. ACM,19(7), 371–384 (1976).

    Article  MATH  Google Scholar 

  • [Mil80] Milner, R.:A Calculus of Communicating Systems. Lecture Notes in Computer Science 92, Springer-Verlag, 1980.

  • [Mil89a] Milner, R.:Communication and Concurrency. Prentice Hall, 1989.

  • [Mil89b] Milner, R.: A Complete Axiomatization for Observation Congruence of Finite-State Behaviours.Information and Computation,81, 227–247 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  • [MSS89] Miyano, S., Shiraishi, S. and Shoudai, T.: A List ofP-complete Problems. Technical Report RIFIS-TR-CS-17, Kyushu University 33, 1989.

  • [PaT87] Paige, R. and Tarjan, R.E.: Three Partition Refinement Algorithms.SIAM Journal on Computing,16(6), 973–989 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  • [Par81] Park, D.: Concurrency and Automata on Infinite Sequences, Lecture Notes in Computer Science 104. Springer-Verlag pp. 168–183, 1981.

  • [ViS86] Vitter J.S., and Simons, R.A.: New Classes for Parallel Complexity: a Study of Unification and Other Complete Problems forP.IEEE Transactions on Computers,C-35(5), 403–418 (1986).

    Article  MATH  Google Scholar 

  • [Wal89] Walker, D.J.: Automated Analysis of Mutual Exclusion Algorithms Using CCS.Formal Aspects of Computing,1, 273–292 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Accepted in revised form November 1991 by R. Milner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balcázar, J., Gabarró, J. & Sántha, M. Deciding bisimilarity isP-complete. Formal Aspects of Computing 4 (Suppl 1), 638–648 (1992). https://doi.org/10.1007/BF03180566

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03180566

Keywords

Navigation