, Volume 47, Issue 1, pp 23–33 | Cite as

Diazotrophic endophytes of native black cottonwood and willow

  • Sharon L. DotyEmail author
  • Brian Oakley
  • Gang Xin
  • Jun Won Kang
  • Glenda Singleton
  • Zareen Khan
  • Azra Vajzovic
  • James T. Staley


Poplar and willow are economically-important, fast-growing tree species with the ability to colonize nutrient-poor environments. To initiate a study on the possible contribution of endophytes to this ability, we isolated bacteria from within surface-sterilized stems of native poplar (Populus trichocarpa) and willow (Salix sitchensis) in a riparian system in western Washington state. Several of the isolates grew well in nitrogen-limited medium. The presence ofnifH, a gene encoding one of the subunits of nitrogenase, was confirmed in several of the isolates including species ofBurkholderia, Rahnella, Sphingomonas, andAcinetobacter. Nitrogenase activity (as measured by the acetylene reduction assay) was also confirmed in some of the isolates. The presence of these diazotrophic microorganisms may help explain the ability of these pioneering tree species to grow under nitrogen limitation.


Endophyte nitrogen fixation poplar willow Salicaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikari, T.B., Joseph, C.M., Yang, G., Phillips, D.A., and Nelson, L.M. 2001. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice.Canadian Journal of Microbiology 47: 916–924.CrossRefPubMedGoogle Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Research 25: 3389–3402.CrossRefPubMedGoogle Scholar
  3. Asis, C.A., Jr. and Adachi, K. 2004. Isolation of endophytic diazotrophPantoea agglomerans and nondiazotrophEnterobacter asburiae from sweetpotato stem in Japan.Letters in Applied Microbiology 38: 19–23.CrossRefPubMedGoogle Scholar
  4. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J.V., Vangronsveld, J., and van der Lelie, D. 2004. Engineered endophytic bacteria improve phyto-remediation of water-soluble, volatile, organic pollutants.Nature Biotechnology 22: 583–588.CrossRefPubMedGoogle Scholar
  5. Behrendt, U., Ulrich, A., Schumann, P., Erler, W., Burghardt, J., and Weyfarth, W. 1999. A taxonomic study of bacteria isolated from grasses: a proposed new species,Pseudomonas graminis sp nov.International Journal of Systematic Bacteriology 49: 297–308.PubMedGoogle Scholar
  6. Berge, O., Heulin, T., Achouak, W., Richard, C., Bally, R., and Balandreau, J. 1991.Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize.Canadian Journal of Microbiology 37: 195–203.Google Scholar
  7. Boerjan, W. 2005. Biotechnology and the domestication of forest trees.Current Opinion in Biotechnology 16: 1–8.CrossRefGoogle Scholar
  8. Braatne, J.H., Rood, S.B., and Heilman, P.E. 1996. Life history, ecology, and conservation of riparian cottonwoods in North America. In:Biology of Populus and its Implications for Management and Conservation. Stettler, R.F., Bradshaw, H.D., Heilman, P.E., and Hinckley, T.M., eds. NRC Research Press, Ottawa, pp. 57–85.Google Scholar
  9. Brighnigna, L., Montaini, P., Favilla, F., and Trejo, A.C. 1992. The role of the nitrogen-fixing bacterial microflora in the epiphytism ofTillandsia (Bromeliaceae).American Journal of Botany 79: 723–727.CrossRefGoogle Scholar
  10. Burgmann, H., Widmer, F., Sigler, W.V., and Zeyer, J. 2004. New molecular screening tools for the analysis of free-living diazotrophs in soil.Applied and Environmental Microbiology 70: 240–247.CrossRefPubMedGoogle Scholar
  11. Caballero-Mellado, J., Martinez-Aguilar, L., Paredes-Valdez, G., and Estrada-de Los Santos, P. 2004.Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.International Journal of Systematic and Evolutionary Microbiology 54: 1165–1172.CrossRefPubMedGoogle Scholar
  12. Calvo, J., Calvente, V., de Orellano, M.E., Benuzzi, D., and Sanz de Tosetti, M.I. 2007. Biological control of postharvest spoilage caused byPenicillium expansum andBotrytis cinerea in apple by using the bacteriumRahnella aquatilis.International Journal of Food Microbiology 113: 251–257.CrossRefPubMedGoogle Scholar
  13. Cankar, K., Kraigher, H., Ravnikar, M., and Rupnik, M. 2005. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst).FEMS Microbiology Letters 244: 341–345.CrossRefPubMedGoogle Scholar
  14. Chen, W.M., Moulin, L., Bontemps, C., Vandamme, P., Bena, G., and Boivin-Masson, C. 2003. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature.Journal of Bacteriology 185: 7266–7272.CrossRefPubMedGoogle Scholar
  15. Cocking, E.C. 2005. Intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.In vitro Cellular and Developmental Biology-Plant 41: 369–373.CrossRefGoogle Scholar
  16. Cook, R.J., Thomashow, L.S., Weller, D.M., Fujimoto, D., Mazzola, M., Bangera, G., and Kim, D.-S. 1995. Molecular mechanisms of defense by rhizobacteria against root disease.Proceedings of the National Academy of Sciences USA 92: 4197–4201.CrossRefGoogle Scholar
  17. DeSantis, T.Z., Hugenholtz, P., Keller, K., Brodie, E.L., Larsen, N., Piceno, Y.M., Phan, R., and Andersen, G.L. 2006. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes.Nucleic Acids Research 34: 394–399.CrossRefGoogle Scholar
  18. Döbereiner, J. 1992. History and new perspectives of diazotrophs in association with non-leguminous plants.Symbiosis 13: 1–13.Google Scholar
  19. Döbereiner, J. and Pedrosa, F.O. 1987.Nitrogen Fixing Bacteria In Non-Leguminous Crop Plants. Science Tech Publishers, Madison, WI, USAGoogle Scholar
  20. Döbereiner, J. 1977. N2 fixation associated with non-leguminous plants.Basic Lift Science 9: 451–461.Google Scholar
  21. Doty, S.L. 2008. Tansley Review: Enhancing phytoremediation through the use of transgenics and endophytes.New Phytologist doi: 10.1111/j.1469-8137.2008.02446.x.Google Scholar
  22. Doty, S.L., Dosher, M.R., Singleton, G.L., Moore, A.L., van Aken, B., Stettler, R.F., Strand, S.E., and Gordon, M.P. 2005. Identification of an endophyticRhizobium in stems ofPopulus.Symbiosis 39: 27–36.Google Scholar
  23. Ederer, M.M., Crawford, R.L., Herwig, R.P., and Orser, C.S. 1997. PCP degradation is mediated by closely related strains of the genusSphingomonas.Molecular Ecology 6: 39–49.CrossRefPubMedGoogle Scholar
  24. Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., Isawa, T., Mitsui, H., and Minamisawa, K. 2001. Endophytic colonization and in planta nitrogen fixation by aHerbaspirillum sp. isolated from wild rice species.Applied and Environmental Microbiology 67: 5285–5293.CrossRefPubMedGoogle Scholar
  25. Fain, M.G. and Haddock, J.D. 2001. Phenotypic and phylogenetic characterization ofBurkholderia (Pseudomonas) sp. strain LB400Current Microbiology 42: 269–275.PubMedGoogle Scholar
  26. Feng,Y., Shen, D., and Song, W. 2006. Rice endophytePantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates.Journal of Applied Microbiology 100: 938–945.CrossRefPubMedGoogle Scholar
  27. Flores-Encarnacion, M., Contreras-Zentella, M., Soto-Urzua, L., Aguilar, G.R., Baca, B.E., and Escamilla, J.E. 1999. The respiratory system and diazotropic activity ofAcetobacter diazotrophicus PAL5.Journal of Bacteriology 181: 6987–6995.PubMedGoogle Scholar
  28. Foster, L.J., Kwan, B.H., and Vancov, T. 2004. Microbial degradation of the organophosphate pesticide, Ethion.FEMS Microbiology Letters 240: 49–53.CrossRefPubMedGoogle Scholar
  29. Gadkari, D., Morsdorf, G., and Meyer, O. 1992. Chemolithoautotrophic assimilation of dinitrogen byStreptomyces thermoautotrophicus UBT1: identification of an unusual N2-fixing system.Journal of Bacteriology 174: 6840–6843.PubMedGoogle Scholar
  30. Germaine, K., Keogh, E., Garcia-Cabellos, G., Borremans, B., van der Lelie, D., Barac, T., Oeyen, L., VangronsveId, J., Moore, F.P., Moore, E.R.B., Campbell, C.D., Ryan, D., and Dowling, D.N. 2004. Colinisation of poplar trees bygfp expressing bacterial endophytes.FEMS Microbiology Ecology 48: 109–118.CrossRefPubMedGoogle Scholar
  31. Harms, H., Wilkes, H., Wittich, R., and Fortnagel, P. 1995. Metabolism of hydroxydibenzofurans, methoxydibenzofurans, acetoxydibenzofurans, and nitrodibenzofurans bySphingomonas sp. strain HH69.Applied and Environmental Microbiology 61: 2499–2505.PubMedGoogle Scholar
  32. Hashidoko, Y., Hayashi, H., Hasegawa, T., Pumomo, E., Osaki, M., and Tahara, S. 2006. Frequent isolation of sphingomonads from local rice varieties and other weeds grown on acid sulphate soil in South Kalimantan, Indonesia.Tropics 154: 395.Google Scholar
  33. Hirsch, A.M. 2004. Plant-microbe symbioses: A continuum from commensalism to parasitism.Symbiosis 37: 345–363.Google Scholar
  34. Hutner, S.H. 1972. Inorganic nutrition.Annual Review of Microbiology 26: 313–346.CrossRefPubMedGoogle Scholar
  35. Kessler, P.S. and Leigh, J.A. 1999. Genetics of nitrogen regulation inMethanococcus maripaludis.Genetics 152: 1343–1351.PubMedGoogle Scholar
  36. Khan, A.A., Wang, R.F., Coo, W.W., Franklin, W., and Cerniglia, C.E. 1996. Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium,Beijerinckia sp. strain B1, asSphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing.International Journal of Systematic Bacteriology 46: 466–469.PubMedCrossRefGoogle Scholar
  37. Kim, H., Nishiyama, M., Kunito, T., Senoo, K., Kawahara, K., Murakami, K., and Oyaizu, H. 1998. High population ofSphingomonas species on plant surface.Journal of Applied Microbiology 85: 731–736.CrossRefGoogle Scholar
  38. Kuklinsky-Sobral, J., Welington, L.A., Mendes, R., Pizzirani-Kleiner, A.A., and Azevedo, J.L. 2005. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide.Plant and Soil 273: 91–99.CrossRefGoogle Scholar
  39. Liu, Z., Yang, C., and Qiao, C.L., 2007. Biodegradation of p-nitrophenol and 4-chlorophenol byStenotrophomonas sp.FEMS Microbiology Letters 277: 150–156.CrossRefPubMedGoogle Scholar
  40. Ludwig, W., Strunk, O., Westram, R., and et al. 2004. ARB: A software environment for sequence data.Nucleic Acids Research 14: 358–366.Google Scholar
  41. Mastretta, C., Barac, T., Vangronsveld, J., Newman, L., Taghavi, S., and van der Lelie, D. 2006. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments.Biotechnology and Genetic Engineering 23: 175–207.Google Scholar
  42. Minerdi, D., Fani, R., Gallo, R., Boarino, A., and Bonfante, P. 2001. Nitrogen fixation genes in an endosymbioticBurkholderia strain.Applied and Environmental Microbiology 67: 725–732.CrossRefPubMedGoogle Scholar
  43. Moran, N.A., Munson, M.A., Baumann, P., and Ishikawa, H. 1993. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts.Proceedings of the Royal Society of London B253: 167–171.CrossRefGoogle Scholar
  44. Moulin, L., Munive, A., Dreyfus, B., and Boivin-Masson, C. 2001. Nodulation of legumes by members of the b-subclass of Proteobacteria.Nature 411: 948–950.CrossRefPubMedGoogle Scholar
  45. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture.Physiology of the Plant 15: 473–497.CrossRefGoogle Scholar
  46. Muthukumarasamy, R., Kang, U.G., Park, K.D., Jeon, W.T., Park, C.Y., Cho, Y.S., Kwon, S.W., Song, J., Roh, D.H., and Revathi, G. 2007. Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants.Journal of Applied Microbiology 102: 981–991.PubMedGoogle Scholar
  47. Nejad, P. and Johnson, P.A. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato.Biological Control 18: 208–215.CrossRefGoogle Scholar
  48. Ozawa, T., Ohwaki, A., and Okumura, K. 2003. Isolation and characterization of diazotrophic bacteria from the surface-sterilized roots of some legumes.Scientific Report of the Graduate School of Agriculture and Biological Sciences. Osaka Prefecture University 55: 29–36.Google Scholar
  49. Reinhold-Hurek, B. and Hurek, T. 1998. Life in grasses: diazotrophic endophytes.Trends in Microbiology 6: 139–144.CrossRefPubMedGoogle Scholar
  50. Reis, V.M., Baldani, J.I., Baldani, V.L.D., and Dobereiner, J. 2000. Biological dinitrogen fixation in gramineae and palm trees.Critical Reviews in Plant Sciences 10: 227–247.CrossRefGoogle Scholar
  51. Rentz, J.A., Alvarez, P.J.J., and Schnoor, J.L. 2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation.Environmental Pollution 136: 477–484.CrossRefPubMedGoogle Scholar
  52. Ribbe, M., Gadkari, D., and Meyer, O. 1997. N2 fixation byStreptomyces thermoautotrophicus involves a molybdenumdinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase.Journal of Biological Chemistry 272: 26627–26633.CrossRefPubMedGoogle Scholar
  53. Riggs, P.J., Moritz, R.L., Chelius, M.K., Dong, Y., Iniguez, A.L., Kaeppler, S.M., Casler, M.D., and Triplett, E.W. 2002. Isolation and characterization of diazotrophic endophytes from grasses and their effects on plant growth. In:13th International Congress on Nitrogen Fixation. Hamilton. Ontario. Canada. Nitrogen Fixation: A Global Perspective. pp. 263–267.Google Scholar
  54. Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J., and Dowling, D.N. 2008. Bacterial endophytes: recent developments and applications.FEMS Microbiology Letters 278: 1–9.CrossRefPubMedGoogle Scholar
  55. Sevilla, M., Burris, R.H., Gunapala, N., and Kennedy, C. 2001. Comparison of benefit to sugarcane plant growth and15N2 incorporation following inoculation of sterile plants withAcetobacter diazotrophicus wild-type andNif-mutant strains.Molecular Plant Microbe Interactions 14: 358–366.CrossRefPubMedGoogle Scholar
  56. Siciliano, S.D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., Ouellette, D., Roy, R., Whyte, L.G., Banks, M.K., Schwab, P., Lee, K., and Greer, C.W. 2001. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination.Applied and Environmental Microbiology 6: 2469–2475.CrossRefGoogle Scholar
  57. Staley, J.T. 1968.Prosthecomicrobium andAncalomicrobium: new prosthecate freshwater bacteria.Journal of Bacteriology 95: 1921–1942.PubMedGoogle Scholar
  58. Stettler, R.F., Bradshaw, H.D., Heilman, P.E., and Hinckley, T.M. 1996.Biology of Populus and its Implications for Management and Conservation. NRC Research Press, Ottawa.Google Scholar
  59. Sturz, A.V., Christie, B.R., and Nowak, S. 2000. Bacterial endophytes: Potential role in developing sustainable systems of crop production.Critical Reviews of Plant Science 19: 1–30.CrossRefGoogle Scholar
  60. Sun, L., Qiu, F., Zhang, X., Dai, X., Dong, X., and Song, W. 2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis.Microbial Ecology 55: 415–424.CrossRefPubMedGoogle Scholar
  61. Taghavi, S., Barac, T., Greenberg, B., Borremans, B., Vangronsveld, J., and van der Lelie, D. 2005. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene.Applied and Environmental Microbiology 71: 8500–8505.CrossRefPubMedGoogle Scholar
  62. Takeuchi, M., Hamana., K., and Hiraishi, A. 2001. Proposal of the genusSphingomonas sensu stricto and three new genera,Sphingobium, Novosphingobium andSphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses.International Journal of Systematic Evolutionary Microbiology 51: 1405–1417.Google Scholar
  63. Ulrich, K., Ulrich, A., and Ewald, D. 2008. Diversity of endophytic bacterial communities in poplar grown under field conditions.FEMS Microbiology and Ecology 63: 169–180.CrossRefGoogle Scholar
  64. van Aken, B., Peres, C.M., Doty, S.L., Yoon, J.M., and Schnoor, J.L. 2004a.Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides × nigra DN34).International Journal of Systematic and Evolutionary Microbiology 54: 1191–1196.CrossRefPubMedGoogle Scholar
  65. van Aken, B., Yoon, J.M., and Schnoor, J.L. 2004b. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-l,3,5-trinitro-l,3,5-triazine, and octahydro-l,3,5,7-tetranitro-l,3,5-tetrazocine by a phytosymbioticMethylobacterium sp. associated with poplar tissues (Populus deltoides × nigra DN34).Applied and Environmental Microbiology 70: 508–517.CrossRefPubMedGoogle Scholar
  66. Wang, Y.D., Dong, X.J., Wang, X., Hong, Q., Jiang, X., and Li, S.P. 2007. Isolation of phenol-degrading bacteria from natural soil and their phylogenetic analysis.Huan Jing Ke Xue 28: 623–626.PubMedGoogle Scholar
  67. Yrjala, K., Suomalainen, S., Suhonen, E.L., Kilpi, S., Paulin, L., and Romantschuk, M. 1998. Characterization and reclassification of an aromatic- and chloroaromatic-degradingPseudomonas sp., strain HV3, asSphingomonas sp. HV3.International Journal of Systematic Bacteriology 48: 1057–1062.PubMedCrossRefGoogle Scholar
  68. Zhuang, X., Chen, J., Shim, H., and Bai, Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation.Environmental International 33: 406–413.CrossRefGoogle Scholar
  69. Zipper, C., Nickel, K., Angst, W., and Kohler, H.P. 1996. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy) propionic acid] in an enantioselective manner bySphingomonas herbicidovorans sp. nov.Applied and Environmental Microbiology 62: 4318–4322.PubMedGoogle Scholar
  70. Zylstra, G.J. and Kim, E. 1997. Aromatic hydrocarbon degradation bySphingomonas yanoikuyae B1.Journal of Industrial Microbiology and Biotechnology 19: 408–414.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Sharon L. Doty
    • 1
    Email author
  • Brian Oakley
    • 2
  • Gang Xin
    • 3
  • Jun Won Kang
    • 1
  • Glenda Singleton
    • 1
  • Zareen Khan
    • 1
  • Azra Vajzovic
    • 1
  • James T. Staley
    • 2
  1. 1.College of Forest ResourcesUniversity of WashingtonSeattleUSA
  2. 2.Department of MicrobiologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations