Skip to main content
Log in

Growth hormone administration produces a biphasic cellular muscle growth in weaning mice

La administración de GH induce crecimiento celular bifásico en músculo de ratones al destete

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The present study was undertaken to elucidate the effect of the exogenous administration of rhGH on the time course of the cellular muscle growth in male and female BALB/c mice fed 20% dietary protein between weaning and 50 days of age. Also, the efficiency of utilization of protein and energy intake to muscle DNA content and protein per cell (protein to DNA ratio) storage were studied. 120 weaned mice (21 d) were assigned to four groups based on rhGH-treatment (rhGH-treated: 7.4 ng.g−1 BW and control: saline vehicle; via s.c. every two days) and gender. Feed intake was measured daily. At 25, 30, 35, 40, 45 and 50 days of age twenty mice were killed by cervical dislocation and the samples of gastrocnemius muscles were isolated, weighed and protein and DNA contents were measured. The rhGH administration caused a biphasic response altering the muscle cellular growth as a consequence of age-specific feed intake changes. The GH-induced fall of feed intake between 25 and 30 days of age caused decreases in muscle weight and myonuclei number (DNA), whereas muscle cell size was maintained. Later on, the self-controlled increase of feed intake led to the muscle weight recovery to control level, in spite of the irreversible DNA fall, as a consequence of the increase of cellular protein deposition and an enhancement of utilization of protein and energy intakes to deposit protein per cell. These results demonstrate that in spite of the initial (25–30 d of age) muscle DNA fall, rhGH-administration from weaning ensures the recovery of cellular muscle growth to control level through a compensatory muscle hypertrophy.

Resumen

Se estudia el efecto de la administración exógena de la hormona de crecimiento recombinante humana (rhGH) sobre el crecimiento celular del músculo esquelético, así como la eficacia de utilización de la ingesta en el depósito de DNA y proteína/DNA muscular en ratones BALB/c de ambos sexos entre el destete y 50 días de vida, alimentados con una dieta del 20% de proteína. Una vez destetados (21 días), los animales se distribuyen en 4 grupos según sexo (macho y hembra) y tratamiento: rhGH-tratados (74ng/g vía s.c) y controles (solución salina). A los 25, 30, 35, 40, 45 y 50 días de vida se sacrifican 20 ratones por dislocación cación cervical, se extrae el músculo gastrocnemio y se determinan el peso muscular y el contenido de proteína y DNA. La administración de rhGH da lugar a una respuesta bifásica alterando la forma del crecimiento celular en relación con los cambios en la ingesta. La caída inicial de la ingesta (entre 25 y 30 días) induce una drástica disminución en el peso muscular y el número de mionúcleos (DNA), mientras que el tamaño celular (proteína/DNA) se mantiene. Sin embargo, la posterior hiperfagia (35–50 días) facilita la recuperación del peso muscular a valor control, pese a la irreversibilidad de la pérdida del DNA. Esto se produce a consecuencia del incremento del tamaño celular, al cual contribuye el aumento en la eficacia de utilización de la energía y la proteína de la dieta en el depósito proteico muscular. Ello sugiere que, a pesar de la deplección inicial de sustratos, la administración de rhGH a ratones en el momento del destete asegura la recuperación del crecimiento celular del músculo gastrocnemio a través de un mecanismo de hipertrofia compensadora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, G. R., Haddad, F. and Baldwin, K. M. (1999):J. Appl. Physiol.,87, 1705–1712.

    CAS  PubMed  Google Scholar 

  2. Asakawa, K., Hizuka, N., Takano, K., Horikawa, R., Sukegawa, I., Demura, J. and Shizume, K. (1992):Growth Reg.,2, 40–44.

    CAS  Google Scholar 

  3. Azain, M. J., Hausman, B. D., Kasser, T. R. and Martin, R.J. (1995):Am. J. Physiol.,269, 137–144.

    Google Scholar 

  4. Booth, F. W. and Thomason, D.B. (1991):Physiol. Res.,71, 541–585.

    CAS  Google Scholar 

  5. Burton, K. (1956):Biochem. J.,62, 315–323.

    CAS  PubMed  Google Scholar 

  6. Caperna, T.J., Komarek, D. R., Gavelek, D. and Steele, N. C. (1991):J. Anim. Sci.,69, 4019–4029.

    CAS  PubMed  Google Scholar 

  7. Cheek, D. B. (1985):Early Hum. Dev.,12, 211–239.

    Article  CAS  PubMed  Google Scholar 

  8. Enesco, M. and Leblond, C. P. (1962):J. Embryol. Exp. Morph.,10, 530–562.

    Google Scholar 

  9. Gautsch, T. A., Kandl, S. M., Donovan, S. M. and Layman, D. K. (1999):J. Nutr.,129, 828–837.

    CAS  PubMed  Google Scholar 

  10. Glore, S. R. and Layman, D. K. (1987):J. Nutr.,117, 1767–1774.

    CAS  PubMed  Google Scholar 

  11. Goldspink, D. F. and Golberg, A. L. (1975):Am. J. Physiol.,228, 301–309.

    Google Scholar 

  12. Issad, T., Coupé, C., Pastor-Anglada, M., Ferré P. and Girard, J. (1988):Biochem. J.,251, 685–690.

    CAS  PubMed  Google Scholar 

  13. Kidwell, J. F. and Howard, A. (1969):J. Nutr.,107, 61–69.

    Google Scholar 

  14. López-Oliva, M. E., Agis-Torres, A., Unzaga, M. T. and Muñoz-Martinez, E. (1995):Can. J. Anim. Sci.,75, 593–601.

    Google Scholar 

  15. López-Oliva, M. E., Agis-Torres, A., Unzaga, M. T. and Muñoz-Martínez, E. (2000):J. Physiol. Biochem.,56, 9–16.

    Article  PubMed  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randeel, R. (1951):J. Biol. Chem.,193, 265–275.

    CAS  PubMed  Google Scholar 

  17. McCall, G. E., Allen, D. L., Linderman, J. K., Grindeland, R. E., Roy, R. R., Mukku, V. R. and Edgerton, V. R. (1998):J. Appl. Physiol.,84, 1407–1412.

    CAS  PubMed  Google Scholar 

  18. McCusker, R. H. and Campion, D. R. (1986):J. Endocrinol.,111, 279–285.

    Article  CAS  PubMed  Google Scholar 

  19. Milliken, G. A. and Johnson, D. E. (1984): “Analysis of messy data. Volume I: Designed Experiments”. Van Nostrand Reinhold, New York, pp. 29–45.

    Google Scholar 

  20. Moss, F. P. and Leblond, C. P. (1971):Anat. Rec.,170, 421–435.

    Article  CAS  PubMed  Google Scholar 

  21. Phelan, J. N. and Gonyea, W. J. (1997):Anat. Rec.,247, 179–188.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenblatt, J. D. and Parry, D. J. (1993):Pflügers Arch.,423, 255–264.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenblatt, J. D., Young, D. and Parry, D. J. (1994):Muscle Nerve.,17, 608–613.

    Article  CAS  PubMed  Google Scholar 

  24. Searle, T. W., Murray, J. D. and Baker, P. J. (1992):J. Endocrinol.,132, 285–291.

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, A., Lee, Y. B., Murray, J. D. and, Oberbauer, A. M. (1996):Growth Dev. Aging,60, 31–41.

    CAS  PubMed  Google Scholar 

  26. Solomon, M. B., Caperna, T. J., Mroz, R. J. and Steele, N. C. (1994):J. Anim. Sci.,72, 615–621.

    CAS  PubMed  Google Scholar 

  27. Sommerland, H., Ullman, M., Jennische, E., Skottner, E. and Oldfors, A. (1989):Acta Neuropathol.,78, 264–269.

    Article  CAS  PubMed  Google Scholar 

  28. Sorensen, M. T., Oksbjerg, N., Agergaard, N. and Petersen, J.S. (1996):Comp. Biochem. Physiol.,113, 91–96.

    Article  CAS  Google Scholar 

  29. Ullman, M. and Oldfors, A. (1989):Acta Physiol. Scand.,135, 531–536.

    Article  CAS  PubMed  Google Scholar 

  30. Vann, R. C., Althen, T. G., Smith, W. K., Veenhuizen, J. J. and Smith, S. B. (1998):J. Anim. Sci.,76, 1371–1379.

    CAS  PubMed  Google Scholar 

  31. Wallace, T. D., and Silver, J. L. (1988): Econometrics, An Introduction. Addison-Wesley Publishing. Massachusetts, USA.

    Google Scholar 

  32. Zhao, X., Unterman, T. G. and Donovan, S. M. (1995):J. Nutr.,125, 1316–1327.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Oliva, M.E., Agis-Torres, A. & Muñoz-Martínez, E. Growth hormone administration produces a biphasic cellular muscle growth in weaning mice. J. Physiol. Biochem. 57, 255–263 (2001). https://doi.org/10.1007/BF03179819

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179819

Key words

Palabras clave

Navigation