Skip to main content
Log in

Plant aspartate transcarbamylase: kinetic properties of the enzyme from mung bean (Phaseolus aureus) seedlings

  • Biochemistry
  • Published:
Proceedings / Indian Academy of Sciences

Abstract

Aspartate transcarbamylase (EC 2.1.3.2) catalyzes the bi substrate reaction—carbamyl phosphate+ L-aspartate ⇌ carbamyl aspartate ⇌ phosphate, The order of addition of substrates and release of products for the homogeneous aspartate transcarbamylase fromPhaseolus aureuss eedlings has been investigated by using the kinetic methods of analysis. p ]Initial velocity studies indicated that the mechanism might be a sequential one. Product inhibition studies showed that phosphate was a linear competitive inhibitor with respect to carbamyl phosphate and was anS (slope) andI (intercept) linear noncompetitive inhibitor with respect to aspartate. Carbamyl aspartate was a noncompetitive inhibitor with respect to both the substrates. These inhibition patterns agreed with an ordered mechanism of reaction with carbamyl phosphate as the leading substrate and phosphate as the last product to leave the enzyme surface. The presence of dead end complexes and the rapid equilibrium random mechanism were ruled out by the absence of inhibition by the substrate(s) and the linear replot slopevs. the inhibitor concentration.

Acetyl phosphate, an analog ue of carbamyl phosphate was a non-competitive inhibitor with respect to aspartate. This result could be explained both in terms of an ordered as well as a random mechanism. On the other hand, succinate, an analog ue of aspartate was an uncompetitive inhibitor with respect to carbamyl phosphate, indicating that the mechanism was ordered. p ]The transition state analog ue, N-(phosphonoacetyl)-L-aspartate, binds much more tightly than either of the two substrates. This analog ue was a linear competitive inhibitor with respect to carbamyl phosphate and a linear noncompetitive inhibitor with respect to aspartate. These results are compatible with an ordered mechanism rather than a random one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savithri, H.S., Vaidyanathan, C.S. & Appaji Rao, N. Plant aspartate transcarbamylase: kinetic properties of the enzyme from mung bean (Phaseolus aureus) seedlings. Proceedings of the Indian Academy of Sciences - Section B 87, 81–94 (1978). https://doi.org/10.1007/BF03179279

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179279

Keywords

Navigation