Skip to main content
Log in

Cloning of an intronlesscre1 gene fromChaetomium thermophilum

  • Industrial Microbiology
  • Short Communitcation
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The expression of xylanases and cellulases is under carbon catabolite repression, a regulatory repression mechanism of transcription of these enzymes caused bycre1 gene. In the present study we isolatedcre1 partial gene from a thermophilic fungusChaetomium thermophilum ATCC 28076. The fungus was grown on Eggins and Pugh medium with glucose as a carbon source. Genomic DNA was isolated by two different methods and the integral DNA was subjected to polymerase chain reaction (PCR) for the amplification ofcre1 partial gene sequence. The PCR product was ligated into pTZ57R/T vector and transformed in E.coli TOP 10 strain. cDNA from total RNA was utilized as template for RT-PCR analysis, which confirmed the presence of an intronless cre1 gene in the model organism. This is the first report on isolation ofcre1 gene fragment in C.thermophilum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmed S., Jabeen A., Jamil A. (2007). Xylanase fromTrichoderma harzianum: Enzyme characterization and gene isolation. J. Chem. Soc. Pak., 29: 176–182.

    CAS  Google Scholar 

  • Al-Samarrai T.H., Schmid J. (2000). A simple method for extraction of fungal genomic DNA. Lett. Appl. Microbiol., 30: 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Dienes D., Egyhazi A., Reczey K. (2004). Treatment of recycled fiber withTrichoderma cellulases. Ind. Crop. Prod., 20: 11–21.

    Article  CAS  Google Scholar 

  • Dowzer C.E., Kelly J.M. (1991) Analysis of thecreA gene, a regulator of carbon catabolite repression inAspergillus nidulans. Mol. Cell. Biol., 11: 5701–5709.

    CAS  PubMed  Google Scholar 

  • Ebbole D.J. (1998). Carbon catabolite repression of gene expression and conidiation inNeurospora crassa. Fungal. Genet. Biol., 25: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Eggins H.O.W., Pugh G.J.F. (1962). Isolation of cellulose decomposing fungi from soil. Nature, 193: 94–95.

    Article  Google Scholar 

  • Gorke B., Stulke J. (2008). Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol., 6: 613–624.

    Article  PubMed  Google Scholar 

  • Ilmen M., Saloheimo A., Onnela M.L., Penttila M.E. (1997). Regulation of cellulase gene expression in the filamentous fungusTrichoderma reesei. Appl. Environ. Microbiol., 63: 1298–1306.

    CAS  PubMed  Google Scholar 

  • Jekosch K., Kuck U. (2000). Glucose dependent transcriptional expression of the cre1 gene inAcremonium chrysogenum strains showing different levels of cephalosporin C production. Curr. Genet., 37: 388–395.

    Article  CAS  PubMed  Google Scholar 

  • Li D.C., Lu M., Li Y.L. (2003). Purification and characterization of an endocellulase from the thermophilic fungusChaetomium thermophifum CT2. Enzyme Microb. Technol., 33: 932–937.

    Article  CAS  Google Scholar 

  • Mach R.L., Zeilinger S. (2003). Regulation of gene expression in industrial fungi:Trichoderma. Appl. Microbiol. Biotechnol., 60: 515–522.

    CAS  PubMed  Google Scholar 

  • Maheshwari R., Bharadwaj G., Bhat M.K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev., 64(3): 461–488.

    Article  CAS  PubMed  Google Scholar 

  • Pasamontes L., Haiker M., Wyss M., Tessier M., Adolphus P.G.M. van Loon. (1997). Gene cloning, purification and characterization of a heat-stable phytase from the fungusAspergillus fumigatus. Appl. Environ. Microbiol., 63: 1696–1700.

    CAS  PubMed  Google Scholar 

  • Polizei M.L.T.M., Rizzatti A.C.S., Monti R., Trenzi H.F., Jorge J.A., Amorim D.S. (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol., 67: 577–591.

    Article  Google Scholar 

  • Saadia M., Ahmed S., Jamil A. (2008). Isolation and cloning ofCRE1 gene from a filamentous fungusTrichoderma harzianum. Pak. J. Bot., 40: 421–426.

    CAS  Google Scholar 

  • Schmoll M., Kubicek C.P. (2003). Regulation ofTrichoderma cellulase formation: Lessons in molecular biology from an industrial fungus. A review. Acta Microbiol. Immunol. Hung., 50: 125–145.

    Article  CAS  Google Scholar 

  • Serna I. de La, Ng D., Tyler B.M. (1999). Carbon regulation of ribosomal genesin Neurospora crassa occurs by a mechanism which does not requireCre-1, the homologue of theAspergillus carbon catabolite repressor,CreA. Fungal Genet. Biol., 26: 253–269.

    Article  PubMed  Google Scholar 

  • Shuyan L., Xinyuan D., Xuemei L., Peiji G. (2006). A novel ther-mophilic endoglucanase from a mesophilic fungusFusarium oxysporum. Chin. Sci. Bull., 51: 191–197.

    Article  Google Scholar 

  • Strauss J., Mach R.L., Zeilinger S., Hartler G., Stoffler G., Wolschek M., Kubicek C.P. (1995).CRE1, the carbon catabolite repressor protein fromTrichoderma reesei. FEBS Lett., 376: 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Struhl K. (1985). Negative control at a distance mediates catabolite repression in yeast. Nature, 317: 822–824.

    Article  CAS  PubMed  Google Scholar 

  • Takashima S., Nakamura A., Iikura H., Masaki H., Uozumi T. (1998). Isolation of thecreA gene from the cellulolytic fungusHumicola grisea and analysis of CreA binding sites upstream from the cellulase genes. Biosci. Biotech. Biochem., 62: 2364–2370.

    Article  CAS  Google Scholar 

  • Tamayo E.N., Villanueva A., Hasper A.A., de Graaff L.H., Ramon D., Orejas M. (2008). CreA mediates repression of the regulatory genexInR which controls the production of xylanolytic enzymes inAspergillus nidulans. Fungal. Genet. Biol., 45: 984–993.

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B., Liu S.J., Kelly J.M. (2000). Carbon catabolite repression in plant pathogenic fungi: Isolation and characterization of the Gibberellafujikuroi andBotrytis cinerea creA genes. FEMS Microbiol. Lett., 184: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Vieille C., Zeikus G.J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Mol. Biol. Rev., 65: 1–43.

    Article  CAS  Google Scholar 

  • Ziv C., Gorovits R., Yarden O. (2008). Carbon source affects PKA-dependent polarity ofNeurospora crassa in a CRE-1 dependent and independent manner. Fungal. Genet. Biol., 45: 103–116.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Jamil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mushtaq, Z., Saadia, M., Anjum, R.S. et al. Cloning of an intronlesscre1 gene fromChaetomium thermophilum . Ann. Microbiol. 59, 785–788 (2009). https://doi.org/10.1007/BF03179224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179224

Key words

Navigation