Skip to main content
Log in

Study of the biosurfactant-producing profile in a newly isolatedRhodococcus ruber strain

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A biosurfactant-producing strain Z25 was isolated from the oil production water in Daqing Oilfield, China. The strain was identified asRhodococcus ruber by 16S rDNA sequencing.Rhodococcus ruber Z25 showed a preference of alkanes as carbon sources for biosurfactant synthesis. The optimal biosurfactant production was achieved at the NaCI concentration of 2.5% at 34 °C. In batch cultivation, R. ruber Z25 exhibited a cell-growth associated biosurfactant-pro ducing process onn-hexadecane and the maximum yield of biosurfactant production was 13.34 g/L at 44 h. The rate of biosurfactant production per unit biomass (R(biosurf/biomass)) was used to characterize the biosurfactant-producing profile. A two-stage biosurfactant-producing profile of R.ruber Z25 was established by the R(biosurf/biomass) curve, exhibiting the biosurfactant production in correlation with cellular hydrophobicity and biomass accumulation. The crude biosurfactant was extracted by methyltert-butyl ether (MTBE) method and only one glycolipid fraction at Rf value of 0.64 was detected by thin layer chromatography (TLC) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell K.S., Philp J.C., Aw D.W., Christofi N. (1998). The genusRhodococcus. J. Appl. Microbiol. 85: 195–210.

    Article  CAS  PubMed  Google Scholar 

  • Bicca F.C., Fleck L.C., Ayub M.A.Z. (1999). Production of bio-surfactant by hydrocarbon degradingRhodococcus ruber andRhodococcus erythropolis. Rev. Microbiol., 30: 231–236.

    Article  CAS  Google Scholar 

  • Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Cooper D.G., Goldenberg B.G. (1987). Surface active agents fromBacillus species. Appl. Environ. Microbiol., 55: 224–229.

    Google Scholar 

  • Desai J.D., Banat I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol., 61: 47–64.

    CAS  Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers R.A., Smith F. (1956). Colorimetric method for the determination of sugars and related substances. Anal. Chem., 28: 350–353.

    Article  CAS  Google Scholar 

  • Fleck L.C., Bicca F.C., Ayub M.A.Z. (2000). Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites. Biotechnol. Lett., 22: 285–289.

    Article  CAS  Google Scholar 

  • Ghurye G.L., Vipulanandan C. (1994). A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol. Bioeng., 44: 661–666.

    Article  CAS  PubMed  Google Scholar 

  • Ivshina I.B., Kuyukina M.S., Philp J.C., Christofi N. (1998). Oil desorption from mineral and organic materials using biosur factant complexes produced byRhodococcus species. World J. Microbiol. Biotechnol., 14: 711–717.

    Article  CAS  Google Scholar 

  • Kim J.S., Powalla M., Lang S., Wagner F., Lunsdorf H., Wray V. (1990). Microbial glycolipid production under nitrogen limita tion and resting cell condition. J. Bacterid., 13: 257–266.

    CAS  Google Scholar 

  • Kitamoto D., Isoda H., Nakahara T. (2002). Functions and poten tial applications of glycolipid biosurfactants: from energy-saving materials to gene delivery carriers. J. Biosci. Bioeng., 94: 187–201.

    Article  CAS  PubMed  Google Scholar 

  • Kuyukina M.S., Ivshina I., Philip J., Christofi N., Dunbar S., Ritchkova M. (2001). Recovery ofRhodococcus biosur factants using methyl tertiary-butyl ether extraction. J. Microbiol. 46: 149–156.

    CAS  Google Scholar 

  • Lang S., Wullbrandt D. (1999). Rhamnose lipids-biosynthe-sis, microbial production and application potentials. Appl. Microbiol. Biotechnol., 51: 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Lin T.C., Young C.C., Ho M., Yeh M.S., Chou CL, Wei Y.H., Chang J.S. (2005). Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. J. Biosci. Bioeng., 99: 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Mutalik S.R., Vaidya B.K., Joshi R.M., Desai K.M., Nene S. (2008). Use of response surface optimization for the produc tion of biosurfactant fromRhodococcus spp. MTCC 2574, Bioresource Tech., 99: 7875–7880.

    Article  CAS  Google Scholar 

  • Philp J.C., Kuyukina M.S., Ivshina I.B., Dunbar S.A., Christofi N., Lang S., Wray V. (2002). AlkanotrophicRhodococcus ruber as a biosurfactant producer. Appl. Microbiol. Biotechnol., 59: 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Pirog T.P., Shevchuk T.A., Voloshina I.N., Karpenko E.V. (2004). Production of surfactants byRhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl. Biochem. Microbiol., 40: 470–475.

    Article  CAS  Google Scholar 

  • Pruthi V., Cameotra S.S. (1997). Rapid identification of biosur factant producing bacterial strains using a cell surface hydro-phobicity technique. Biotechnol. Tech., 11: 671–674.

    Article  CAS  Google Scholar 

  • Rahman K.S.M., Rahman T.J., Kourkoutas Y., Petsas I., Marchant R., Banat I.M. (2003). Enhanced bioremediation ofn-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Tech., 90: 159–168.

    Article  CAS  Google Scholar 

  • Rodrigues L., Teixeira J., Oliveira R., van der Mei H.C (2006). Response surface optimization of the medium components for the production of biosurfactants by hydrophobic bacteria. Process Biochem., 41: 1–10.

    Article  CAS  Google Scholar 

  • Sandrin T.R., Chech A.M., Maier R.M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during naphtha lene biodegradation. Appl. Environ. Microbiol., 66: 4585–4588.

    Article  CAS  PubMed  Google Scholar 

  • Wagner F., Behrendt U., Bock H., Kretschmer A., Lang S., Syldatk C (1983). Production and chemical characterisation of sur factants fromRhodococcus erythropolis andPseudomonas sp. MUB grown on hydrocarbons. In: Zajic J.E., Cooper D.G., Jack TR., Kosaric N., Eds, Microbial Enhanced Oil Recovery, Pennwell, Tulsa, Okla, pp. 55–60,

    Google Scholar 

  • Wei Y.H., Lai H.C., Chen S.Y., Yeh M.S., Chang J.S. (2004). Biosurfactant production bySerratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnol. Lett., 26: 799–802.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Li, S., Yu, L. et al. Study of the biosurfactant-producing profile in a newly isolatedRhodococcus ruber strain. Ann. Microbiol. 59, 771–776 (2009). https://doi.org/10.1007/BF03179222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179222

Keywords

Navigation