Skip to main content
Log in

Preliminary analysis of glutathione S-transferase homolog fromLactobacillus casei Zhang

  • Food Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Glutathione S-transfera ses (GSTs) constitute a large protein family. Some of them are proved to be associated with biphenyl metabolism. In this study, we described a homolog of GST gene inLactobacillus casei Zhang that revealed by genome analysis. The GST gene itself as well as the adjacent gene context was highly conserved among differentL. casei isolates. Phylogenetic investigation suggested that the GST gene was acquired via horizontal gene transfer event, possibly from gamma subdivision. Additional survival experiment indicated that it may not benefit theL. casei host for growing in the presence of biphenyl. It was for the first time discovered that GST was encoded byLactobacillaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allocati N., Federici L., Masulli M., Di Ilio C. (2009). Glutathione transferases in bacteria. FEBS J., 276: 58–75.

    Article  CAS  PubMed  Google Scholar 

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25: 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  • Bartels F., Backhaus S., Moore E.R., Timmis K.N., Hofer B. (1999). Occurrence and expression of glutathione-S-transferase-encoding bphK genes inBurkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology, 145: 2821–2834.

    CAS  PubMed  Google Scholar 

  • Blattner F.R., Plunkett G., 3rd Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., et al. (1997). The complete genome sequence ofEscherichia coli K-12. Science, 277: 1453–1474.

    Article  CAS  PubMed  Google Scholar 

  • Clamp M., Cuff J., Searle S.M., Barton G.J. (2004). The Jalview Java alignment editor. Bioinformatics, 20: 426–427.

    Article  CAS  PubMed  Google Scholar 

  • Fortin P.D., Horsman G.P., Yang H.M., Eltis L.D. (2006). A glutathione S-transferase catalyzes the dehalogenation of inhibitory metabolites of polychlorinated biphenyls. J. Bacteriol., 188: 4424–4430.

    Article  CAS  PubMed  Google Scholar 

  • Kozaki M., Uchimura T., Okada S. (1992). Laboratory Manual of Lactic Acid Bacteria, Asakura Book Store, Tokyo.

    Google Scholar 

  • Kurtovic S., Shokeer A., Mannervik B. (2008). Diverging catalytic capacities and selectivity profiles with haloalkane substrates of chimeric alpha class glutathione transferases. Protein Eng. Des. Sel., 21: 329–341.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd-Jones G., Lau P.C. (1997). Glutathione S-transferaseencoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol., 63: 3286–3290.

    CAS  PubMed  Google Scholar 

  • Mulder N.J., Apweiler R., Attwood T.K., Bairoch A., Bateman A., Binns D., Bradley P., Bork P., Bucher P., Cerutti L., et al. (2005). InterPro, progress and status in. Nucleic Acids Res., 33: D201–205.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo Y., Delawary M., Kimbara K., Takagi M., Ohta A., Nagata Y. (2001). BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation inPseudomonas sp. KKS102. J. Biol. Chem., 276: 36146–36154.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Vuilleumier S. (1997). Bacterial glutathione S-transferases: what are they good for? J. Bacteriol., 179: 1431–1441.

    CAS  PubMed  Google Scholar 

  • Vuilleumier S., Pagni M. (2002). The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl. Microbiol., 58: 138–146.

    CAS  Google Scholar 

  • Yan F., Yang W.K., Li X.Y., Lin T.T., Lun Y.N., Lin F., Lv S.W., Yan G.L., Liu J.Q., Shen J.C., et al. (2008). A trifunctional enzyme with glutathione S-transferase, glutathione peroxidase and superoxide dismutase activity. Biochim. Biophys. Acta., 1780: 869–872.

    CAS  PubMed  Google Scholar 

  • Zhang W., Yu D., Sun Z., Chen X., Bao Q., Meng H., Hu S., Zhang H. (2008a). Complete nucleotide sequence of plasmid plca36 isolated fromLactobacillus casei Zhang. Plasmid., 60: 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W., Yun Y., Sun T., Menghe B., Zhang H. (2008b). Isolation and identification of dominant microorganisms involved in naturally fermented goat milk in Haixi region of Qinghai, China. Ann. Microbiol., 58: 213–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Meng or He Ping Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W.Y., Yu, D.L., Sun, Z.H. et al. Preliminary analysis of glutathione S-transferase homolog fromLactobacillus casei Zhang. Ann. Microbiol. 59, 727–731 (2009). https://doi.org/10.1007/BF03179215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179215

Key words

Navigation